Knomi - ESP C3 Hack

Knomi ist ein extra Display für den Stealthburner das von BTT entwickelt wurde. Es zeigt während dem Druck diverse Statusinformationen, an die es über WLAN vom Drucker bezieht. Siehe dazu auch die Doku für mehr Informationen: https://bigtreetech.github.io/docs/KNOMI.html .

Der original Knomi basiert auf einem ESP32 Wroom. Nun gibt es aber diverse andere Runddisplays, die ebenfalls einen EPS32 verwenden. Eines dieser Displays ist das folgende Display: https://de.aliexpress.com/item/1005005453515690.html

Zu haben für ca. 12€ und damit deutlich günstiger als ein original Knomi. Der Nachteil ist, dass dieses Display einen ESP32 C3 verwendet, der leider nur mit 400 anstatt 520kb RAM ausgestattet ist und zudem nur einen CPU Kern hat (und nicht zwei wie der Knomi).

Im Folgenden wird beschrieben, wie die Firmware kompiliert werden kann und was es ggf. noch an nützlichen Infos gibt ...

YouTube Video #65

WICHTIG

Diese Firmware funktioniert nur auf einem Display Modul mit einem ESP32 C3!

Die Firmware funktioniert nicht auf einem original Knomi!

Vorbereitungen & Infos

Die Anleitung basiert darauf das die alte Arduino IDE (legacy) genutzt wird. Diese kann in einem portablen Modus genutzt werden - sprich alle nötigen Dateien & Ordner befinden sich in einem Ordner auf der Platte.

Als Vorbereitung muss also auf der Festplatte ein Ordner angelegt werden in dem später die Arduino IDE und der Quellcode abgelet werden. Ich werde im Folgenden beispielhaft den Ordner C:\Build verwenden. Wenn ihr einen anderen Ordner habt muss das ggf. angepasst werden.

Downloads

- Die Arduino IDE kann hier geladen werden https://www.arduino.cc/en/software Wir brauchen die Arduino IDE 1.8.19 und zwar als Windows ZIP. Direktlink : https://downloads.arduino.cc/arduino-1.8.19-windows.zip
- Die Datei arduino-1.8.19-windows.zip muss in den Ordner c:\Build\ entpackt werden
- Als nächstes muss der Knomi C3 Quellcode von Github geladen werden. Am einfachsten geht das über den direkten Link https://codeload.github.com/DrKlipper/KNOMI_C3/zip/refs/heads/master
- Das geladene ZIP KNOMI_C3-master.zip wird dann ebenfalls in den c:\Build\ Ordner entpackt
- Danach sollte euer Ordner folgendermaßen aussehen:

Arduino IDE portabel

Damit die Arduino IDE portabel wird muss ein extra Ordner angelegt werden. Und zwar in C:\Build\arduino-1.8.19\ der Ordner portable. Der muss auch wirklich genauso heißen!

Arduino IDE einrichten

• Arduino IDE Starten und Einstellungen (Datei \rightarrow Voreinstellungen) anpassen

Die Einstellungen sind nicht zwingend notwendig, helfen aber ggf. bei der Fehlersuche

3/15

Thema:	Standardthema 🤝 (erfordert Neustart von Arduino)
Ausführliche Ausgabe während:	Kompilierung 🔽 Hochladen
Compiler-Warnungen:	Keine 🗸
Zeilennummern anzeigen	Code-Faltung aktivieren
🗹 Code nach dem Hochladen ü	berprüfen Externen Editor verwenden

 Jetzt muss im Board Manager ein extra Paket f
ür die ESP32 installiert werden. Den Board Manager findet man im Men
ü über Werkzeuge.

Sketch Wer	kzeuge Hilfe			
	Autopatische Formatierung	Strg+T		
	Sketch archivieren			
AP_Con	Kodierung korrigieren & neu laden		Disconnect_Back.c	Home.
uino.h	Bibliotheken verwalten Strg+Umschalt+I			
i.h>	Serieller Monitor	Strg+Umschalt+M		
PClien	Serieller Plotter	Strg+Umschalt+L		
uinoJs iUdp.h	WiFi101 / WiFiNINA Firmware Updater			
iUse	Board: "ESP32C3 Dev Module"		Boardverwalter	
1.h>	Upload Speed: "921600"	>	Arduino AVR Boards	; >
yanGFX	USB CDC On Boot: "Enabled"	ESP32 Arduino	>	
.h>	CDIT Frequency: "160MHz (W/iEi)"	>		

Hier suchen wir nach dem Paket ESP32 und installieren (Button unten rechts) die letzte Version

Boardverwalter					
Typ Alle v esp32					
Arduino ESP32 Boards					
by Arduino					
In diesem Paket enthaltene Boards:					
Arduino Nano ESP32.					
More Info					
esp32					
by Espressif Systems Version 2.0.11 INSTALLED					
In diesem Paket enthaltene Boards:					
ESP32 Dev Board, ESP32-S2 Dev Board, ESP32-S3 Dev Board, ESP32-C3 Dev Board.					
More Info					
Version auswäh V					

Die Arduino IDE schließen

Bibliotheken

Für das korrekte Kompilieren müssen noch 3 Bibliotheken kopiert werden.

 Die Bibliotheken (Libs) aus dem Ordner
 C:\build\KNOMI_C3-master\Firmware\lib in den Arduino IDE Ordner C:\build\arduino-1.8.19\portable\packages\esp32\hardware\esp32\2.0.11\li braries kopieren.

extra ESP32 Partition

Es muss eine neues Partition Layout hinzugefügt werden (beschreibt die Einteilung des Flash in bestimmte Bereiche). Sonst passt die compilierte Firmware nicht komplett in den Seicher.

- Die Partition Datei
 C:\Build\KNOMI_C3-master\Firmware\c3_partitions.csv
 muss in den Ordner
 C:\Build\arduino-1.8.19\portable\packages\esp32\hardware\esp32\2.0.11\to
 ols\partitions\
 kopiert werden.
- Dann muss noch ein Eintrag im Partiton Menü hinzugefügt werden Die Datei C:\Build\arduino-1.8.19\portable\packages\esp32\hardware\esp32\2.0.11\bo ards.txt in einem Texteditor öffnen
- Im Bereich esp32c3.menu.PartitionScheme (Auf das esp32c3 / ESP32C3 Dev

Module achten •) muss am Ende folgendes ergänzt werden:

```
esp32c3.menu.PartitionScheme.knomi_c3=Knomi C3 (3,3MB No OTA/1MB
SPIFFS)
esp32c3.menu.PartitionScheme.knomi_c3.build.partitions=c3_partitions
esp32c3.menu.PartitionScheme.knomi_c3.upload.maximum_size=3342336
```

```
esp32c3.menu.PartitionScheme.app3M_+at9M_16MB.upload.maximum_size=3145/28
esp32c3.menu.PartitionScheme.rainmaker=RainMaker
esp32c3.menu.PartitionScheme.rainmaker.build.partitions=rainmaker
esp32c3.menu.PartitionScheme.rainmaker.upload.maximum_size=3145728
esp32c3.menu.PartitionScheme.knomi_c3=Knomi C3 (3,3MB No OTA/1MB SPIFFS)
esp32c3.menu.PartitionScheme.knomi_c3.build.partitions=c3_partitions
esp32c3.menu.PartitionScheme.knomi_c3.upload.maximum_size=3342336
```

• Datei speichern und schließen.

Die Arduino IDE starten (über arduino.exe)

(uber arduino.exe)

Controller einstellen

- In der Arduino IDE muss ein ESP32 C3 Controller ausgewählt werden (Menü Tools bzw. Werkzeuge).
- Zusätzlich sind alle Einstellungen wie folgt zu setzen

Board: "ESP32C3 Dev Module"	>
Upload Speed: "921600"	>
USB CDC On Boot: "Enabled"	>
CPU Frequency: "160MHz (WiFi)"	>
Flash Frequency: "80MHz"	>
Flash Mode: "QIO"	>
Flash Size: "4MB (32Mb)"	>
Partition Scheme: "Knomi C3 (3,3MB No OTA/1MB SPIFFS)"	>
Core Debug Level: "Keine"	>
Erase All Flash Before Sketch Upload: "Disabled"	>
JTAG Adapter: "Disabled"	>
Port: "COM8"	>

Hinweis:

Der COM Port muss natürlich ermittelt werden! Das geht z.B. über den Geräte Manager von Windows.

Code laden und kompilieren

- In der Arduino IDE über öffnen aus dem Ordner C:\Build\KNOMI_C3master\Firmware\KnomiC3 die Datei KnomiC3.ino öffnen.
- In der Datei WifiUser.cpp eure Daten eintragen. Die Datei findet ihr in den Reitern in der Arduino IDE oben.
 Eintragen müsst ihr folgendes:

```
// WEB Config
String wifi_ssid = "SSID"; // Wifi SSID
String wifi_pass = "Password"; // Wifi Password
String klipper_ip = "192.168.xxx.xxx"; // Klipper IP
```

- Dann im Menü Sketch → Überprüfen/Kompilieren anklicken und warten
- Wenn am Ende dann sowas da steht:

```
Der Sketch verwendet 2999696 Bytes (89%) des Programmspeicherplatzes.
Das Maximum sind 3342336 Bytes.
Globale Variablen verwenden 184460 Bytes (56%) des dynamischen
Speichers, 143220 Bytes für lokale Variablen verbleiben. Das Maximum
sind 327680 Bytes.
```

... hat das Kompilieren geklappt

• Jetzt könnt ihr den Code auf den Controller übertragen, mit dem Pfeil nach rechts oben bei den Buttons.

Und ja, man hätte sich das Compilieren vorher auch sparen können, denn das würde er bei

diesem Schritt sonst automatisch mit erledigen

Test

Wenn der Knomi C3 jetzt bootet sollte er erst einen Startschirm zeigen und dann die rollenden Augen.

Klipper Konfig

• Eine neue Konfig Datei (z.B. knomi.cfg) mit folgendem Inhalt anlegen:

knomi.cfg

```
### KNOMI ADDON
[gcode_macro BedLevelVar]
variable_leveling : False
gcode:
   SET_GCODE_VARIABLE MACRO=BedLevelVar VARIABLE=leveling
VALUE=False
[gcode_macro HomeSetVar]
variable_homing : False
gcode:
   SET_GCODE_VARIABLE MACRO=HomeSetVar VARIABLE=homing VALUE=False
#[gcode_macro G28]
#rename_existing: G0028
#variable_homing:False
#
```

Last update: 2023/10/28 14:25 hardware:3d_druck:65_btt_knomi https://drklipper.de/doku.php?id=hardware:3d_druck:65_btt_knomi&rev=1698495911

#gcode:

- # SET GCODE VARIABLE MACRO=HomeSetVar VARIABLE=homing VALUE=True
- # G0028 {rawparams}
- # SET GCODE VARIABLE MACRO=HomeSetVar VARIABLE=homing VALUE=False
- Wenn ihr einen Drucker ohne ein [homing_override] habt, dann müsst ihr das untere Makro ([gcode_macro G28]) noch aktivieren. Dazu alle # am Anfang der Zeilen entfernen
- Die Datei in der printer.cfg inkludieren : [include knomi.cfg]
- Jetzt müsst ihr an der Stelle wo euer Leveling passiert (bei mir ist das beim QGL) 2 Zeilen ergänzen:

```
SET_GCODE_VARIABLE MACRO=BedLevelVar VARIABLE=leveling VALUE=True
QUAD_GANTRY_LEVEL
SET_GCODE_VARIABLE MACRO=BedLevelVar VARIABLE=leveling VALUE=False
```

Bei mir ist das in einem Printer_Start Makro. Die erste Zeile setzt den Status "Leveln" und die letzte Zeile setzt den Status wieder zurück. Wo ihr das bei euch genau eintragt müsst ihr mal selber ermitteln. Das hängt sicherlich auch vom Drucker und eurer Konfig ab.

 Dann müssen wir noch das Homing mit einem extra Status versehen. Wenn ihr kein [homing_override] in eurer Konfig habt, dann reicht dsas G28 Makro in der Extra Konfig. Habt ihr aber [homing_override], dann kommt folgendes an den Anfang: SET_GCODE_VARIABLE MACRO=HomeSetVar VARIABLE=homing VALUE=True

```
[homing_override]
axes: xyz
gcode:
   SET_GCODE_VARIABLE MACRO=HomeSetVar VARIABLE=homing VALUE=True
   # collect user state variables
   _User_Variables
   {% set verbose = printer["gcode_macro _User_Variables"].verbose %}
   {% set safe_z = printer["gcode_macro _User_Variables"].safe_z|float %}
```

und folgendes ans Ende:

• Zum Schluss noch im Printer_Start Macro die Werte zum Druckstart zurücksetzen:

```
SET_GCODE_VARIABLE MACRO=BedLevelVar VARIABLE=leveling VALUE=False
SET_GCODE_VARIABLE MACRO=HomeSetVar VARIABLE=homing VALUE=False
```


Probleme

- TFT_eSPI ist der fasche Grafiktreiber → lvyx... muss rein
 Es muss auch eine extra konfig Klasse eingebaut werden !
- Das Startlogo (BTT_LOGO) ist zu groß Der C3 hat 400KB Ram, der Wroom 520kb
 Das Startbild ist aber ca. 110kb Groß und freier Speicher nach Knomi Start sind beim C3 nur ~76KB → Boot Loop !!
- Die Hintergrundbeleuchtung ist auf IO3 und nicht 2 oder 16
- Konvertierung des Sketch für Arduino IDE (Main Datei umbenennen)
- Zahlreiche Includes müssen umgebaut werden von <> nach "" → liegt an der Arduino IDE
- Es braucht das letzte Paket von ESP32 in der Arduino IDE, sonst ist der C3 nicht verfügbar
- Die Partition Table muss umgebaut werden. Sonst passt das BIN nicht in den Controller
- Die EEPROM Klasse funktioniert nicht richtig \rightarrow Daten weren nicht gespeichert
- USB CDC macht ein wenig Probleme
 - → Der Port ist nach dem Start in der Arduino IDE nicht mehr gültig (falsches Handle) → wenn sich der C§ aufhängt geht gar kein Upload mehr. Dann muss man den Controller manuell in den Boot Modus bringen → BOOT halten → Reset drücken → BOOT loslassen CDC muss auch extra aktiviert werden in der Arduino IDE !!
- Der Controller muss in der Arduino IDE umgestellt werden auf C3 Dev
- ggf. kleine Anpassungen an lv_conf.h

```
esptool.py v4.5.1
Serial port COM10
A fatal error occurred: Could not open COM10, the port doesn't exist
A fatal error occurred: Could not open COM10, the port doesn't exist
```

Anpassungen / Script

- Neues Bootlogo
- Angepasste GIF Animationen
- Problem \rightarrow HTTP Blockt wegen einem Kern
- Anpassung Status Abfrage Klipper !
 - https://www.klipper3d.org/Command_Templates.html#variables
- Teil drucken mit Aussparung
- Es gibt auch ein Display mit 2 kernen / 520k Ram \rightarrow

https://de.aliexpress.com/item/1005005644432428.html

- Voron Logo entfernt
- Logik angepasst
- lv_conf.h Anpassung wegen Farbne invert \rightarrow #define LV_COLOR_16_SWAP 0
- GIF kann man extrahieren mit Seite ...
 - o http://tomeko.net/online_tools/hex_to_file.php?lang=en
 - Anpassen hiermit : https://ezgif.com/optimize
 - Zurückwandeln in Hex String hiermit :
 - http://tomeko.net/online_tools/file_to_hex.php?lang=en
- Startbitmap
 - \circ 240×240 Bixel RGB je 8 Farben → Export Gimp Optionen ! → 24 Bit
 - Converter : https://lvgl.io/tools/imageconverter
 - \circ Color Format → CF_TRUE_COLOR
 - \circ Output → C Array
 - Optionen aus
- Gif Tools
 - https://onlinegiftools.com/optimize-gif
- Moonraker Remote API
 - https://moonraker.readthedocs.io/en/latest/web_api/

Flashen

D:\Projekte\Knomi\arduino-1.8.19\portable\packages\esp32\tools\esptool_py\4.5.1/esptool.exe
 -chip esp32c3 -port COM4 -baud 921600 -before default_reset -after hard_reset write_flash -z
 -flash_mode dio -flash_freq 80m -flash_size 4MB 0x0

 $\label{eq:linear} C:\label{eq:linear} C:\lab$

 $\label{eq:linear} C:\label{eq:linear} C:\lab$

 $\label{eq:linear} D:\Projekte\Knomi\arduino-1.8.19\portable\packages\esp32\hardware\esp32\2.0.11\tools\partitions\boot_app0.bin 0x10000$

C:\Users\DOMINI~1\AppData\Local\Temp\arduino_build_847170/KnomiC3.ino.bin

esptool.exe --chip esp32c3 --port COM4 --baud 921600 --before default_reset -after hard_reset write_flash -z --flash_mode dio --flash_freq 80m -flash_size 4MB 0x0 KnomiC3.ino.bootloader.bin 0x8000
KnomiC3.ino.partitions.bin 0xe000 boot_app0.bin 0x10000 KnomiC3.ino.bin

• ESP Tool EXE → https://github.com/espressif/esptool/releases

Hardware DIFF

Funktion	Knomi Desc.	Knomi Pin	Knomi Display	Clone Desc.	Clone Pin	Clone Display
Boot Taster	BOOT	100		BOOT	109	
Backlight	Backlight	102	2 LEDK (vom Mosfet)		103	LED-
Bildschirm Reset	Screen-rst	104	11 RES	REST	EN	11 REST
WIFI Reset	WIFI RESET	EN				
WIFI Mosi	WIFI MOSI	1023	10 SDIN	SDA	107	10 SPIMOSI

Funktion	Knomi Desc.	Knomi Pin	Knomi Display	Clone Desc.	Clone Pin	Clone Display
WIFI Miso	WIFI MISO	1019	7 RS	D/C	102	7 SPIMISO
WIFI SCK	WIFI SCK	1018	9 SCLK	SCL	106	9 SPICLK
WIFI CS	WIFI CS	105	8 CS	CS	1010	8 SPICS
Uart TX	U0TXD	TXD0		USB_DN	1018	
Uart RX	U0RXD	RXD0		USB-DP	1019	
LED	??	1032				

Hardware Knomi

ESP

Display

Hardware new

ESP

Display

Links

- ESP Chip Info https://github.com/Jason2866/ESP32_Show_Info
 Beim C3 am Anfang ein dekay(4000) einbauen weil sonst keine seriellen Ausgaben kommen !
- https://github.com/bigtreetech/KNOMI
- https://bigtreetech.github.io/docs/KNOMI.html
- https://de.aliexpress.com/item/1005005453515690.html → Without Touch
- Display Libraries & Docs http://pan.jczn1688.com/directlink/1/ESP32%20module/1.28inch_ESP32-2424S012.zip?spm=a2 g0o.detail.1000023.1.1d16270bygRPys&file=1.28inch_ESP32-2424S012.zip
- https://bigtreetech.github.io/docs/KNOMI.html#
- https://github.com/DrKlipper/KNOMI_C3/

Direkt flashen

 esptool.exe --chip esp32c3 --port COM4 --baud 921600 --before default_reset --after hard_reset write_flash -z --flash_mode dio -flash_freq 80m --flash_size 4MB 0x0 KnomiC3.ino.bootloader.bin 0x8000 KnomiC3.ino.partitions.bin 0xe000 boot_app0.bin 0x10000 KnomiC3.ino.bin

Firmware compilieren

https://github.com/DrKlipper/KNOMI_C3

Klipper Konfig

Verbindung einrichten

Reset

esptool.exe -port COM4 erase_flash

Zukunft

520kb Display

From: https://drklipper.de/ - **Dr. Klipper Wiki**

Permanent link: https://drklipper.de/doku.php?id=hardware:3d_druck:65_btt_knomi&rev=1698495911

Last update: 2023/10/28 14:25

