
2025/11/07 07:52 1/5 Wetterstation

Wetterstation

kONVERTIERUNG Pi > ESP32

• Anschluss Pi

• Anschluss ESP32

Pi Pin	ESP32 Pin	Funktion
GPIO 5	GPIO21	I2C SDA

https://drklipper.de/ Printed on 2025/11/07 07:52

2025/11/07 07:52 3/5 Wetterstation

Pi Pin	ESP32 Pin	Funktion
GPIO 3	GPIO22	I2C SCL
GPIO 7	GPIO17	OneWire
	GPIO25	Regenmesser
	GPIO27	Windgeschwindigkeit
	GPIO26	LED Wlan
	GPIO18	LED Akku
	GPIO19	LED Regen
	GPIO23	LED Reserve
5V	Vin ??	
3,3V		Kommen vom Pi!

• Dallas Adressen

Sensor Nr	Dallas MAC	Dallas MAC (Pi)	Funktion
1		28-01184286d5ff	Bodentemperatur +5cm (Luft)
2		28-0318408bf1ff	Bodentemperatur -5cm (Oberflaeche)
3		28-0118428444ff	Bodentemperatur -30cm
4		28-0118428919ff	Bodentemperatur -100cm

Extra Berechnungen U/I

Bereich/Sensor	Gemessene Werte	Abgeleiteter Wert	Formel	Beschreibung	
μController (5V)	Spannung (V_µC) Strom (I_µC)	Leistung (P_μC)	Ρ_μC = V_μC * Ι_μC	Zeigt den aktuellen Leistungsverbrauch des Mikrocontrollers und aller angeschlossenen Peripheriegeräte in Watt; hilfreich zur Überwachung des Energiebedarfs und zur Erkennung von Anomalien wie Überlastungen.	
		Energie verbraucht (Wh_µC)	Wh_ μ C = $\int P_{\mu}C dt$ (Integration über Zeit)	Kumulierte Energie, die der µController und seine Komponenten über einen bestimmten Zeitraum verbraucht haben; ideal für langfristige Analysen, z. B. tägliche oder monatliche Verbrauchsbilanzen und Optimierungen.	
Akku (12V)	Spannung (V_Akku) Strom (I_Akku) (positiv: Entladung; negativ: Ladung)	Leistung (P_Akku)	P_Akku = V_Akku * I_Akku	Gibt die aktuelle Leistung an, die der Akku abgibt (bei Entladung) oder aufnimmt (bei Ladung) in Watt; ermöglicht die Echtzeit-Überwachung des Akku-Zustands und der Lade- /Entladeprozesse.	

13:52						
		SOC (State of Charge) in % (genau)	SOC = [(Kapazität_Ah - ∫ I_Akku dt * Effizienz) / Kapazität_Ah] * 100 br>(Effizienz ~0.95; Initial aus V- LUT)	Berechnet den genauen Füllstand des Akkus in Prozent unter Berücksichtigung von Coulomb-Zählung und Lade-/Entladeeffizienz; verbessert die Genauigkeit im Vergleich zu reiner Spannungsmessung und hilft bei der Vorhersage der Restkapazität.		
		Restlaufzeit (h)	Restlaufzeit = (SOC/100 * Kapazität_Ah) / I_µC_eq = I_µC * (V_µC / V_Akku) angepasst)	Schätzt die verbleibende Betriebszeit in Stunden basierend auf dem aktuellen Füllstand und dem angepassten Verbrauchsstrom; nützlich für Alarme bei niedrigem Ladestand und Planung von Ladezyklen (nur relevant bei Entladung).		
		Energie entnommen/geladen (Wh_Akku)	Wh_Akku = ∫ P_Akku dt	Kumulierte Energiebilanz des Akkus, die entnommen oder geladen wurde; ermöglicht die Analyse von Zyklen, Degradation und Gesamteffizienz über längere Perioden.		
Solarpanel	Spannung (V_Solar) Strom (I_Solar)	Leistung (P_Solar)	P_Solar = V_Solar * I_Solar	Zeigt den aktuellen Energieertrag des Solarpanels in Watt; hilft bei der Bewertung der Sonneneinstrahlung und der Panel-Leistung in Echtzeit.		
		Energie erzeugt (Wh_Solar)	Wh_Solar = ∫ P_Solar dt	Kumulierter Energieertrag des Solarpanels über Zeit; eignet sich für Statistiken wie täglichen Ertrag, Saisonalvergleiche und Systemoptimierung.		
Systemweit (kombiniert)	-	Effizienz Laderegler (Solar → Akku)	Eff_Laden = (\	P_Akku\	bei Ladung,	Misst den Wirkungsgrad des Ladereglers, d. h. welcher Anteil der Solarleistung effektiv im Akku gespeichert wird; niedrige Werte können auf Verluste durch Wärme, falsche MPPT-Einstellungen oder Defekte hinweisen.
		Effizienz DC-DC- Wandler (Akku → μC)	Eff_Wandler = (P_μC / P_Akku) * 100 br>(nur bei Entladung, I_Akku > 0)	Berechnet den Wirkungsgrad des Spannungswandlers von 12V auf 5V; zeigt Verluste und hilft bei der Diagnose von Ineffizienzen oder Hardwareproblemen.		

https://drklipper.de/
Printed on 2025/11/07 07:52

2025/11/07 07:52 5/5 Wetterstation

Gesamteffizienz (Solar → μC)	P_Solar) * 100 (bei direkter	Gibt den Gesamtwirkungsgrad des Systems von Solarerzeugung bis zum Verbrauch am µController an; nützlich für die Bewertung der Systemeffizienz und Identifikation von Optimierungspotenzialen.	
Autarkie-Grad (%)	Autarkie = [min(P_Solar, P_μC) / P_μC] * 100	Prozentsatz, zu dem der μController-Verbrauch direkt durch Solarenergie gedeckt wird, ohne den Akku zu belasten; fördert die Analyse der Systemunabhängigkeit von externen Quellen.	

From:

https://drklipper.de/ - Dr. Klipper Wiki

Permanent link:

https://drklipper.de/doku.php?id=haussteuerung:esphome:wetterstation & rev=1762433527211. The property of th

Last update: **2025/11/06 13:52**

