Leviathan V1.2 (USB)

Schrittweise Anleitung, um das LDO Leviathan V1.2 Board über USB in Betrieb zu nehmen.

Leviathan V1.2

YouTube Video #85

Hinweise

- SBC bedeutet in der Anleitung Single Board Computer. Also meistens wohl ein Raspberry Pi.
- Es wird davon ausgegangen das auf dem SBC Klipper und MainSail eingerichtet ist.
- Ein Zugang zum SBC über SSH ist notwendig!
- In der Originalanleitung wird darauf verwiesen, dass die Firmware mit einem 32KiB Bootloader Offset kompiliert werden soll. Allerdings konnte ich auf meinem Testboard keinen Bootloader

entdecken (der macht auch gar keinen Sinn, weil es keinen SD-Karten Slot gibt). Das würde dazu führen, dass das Update nicht funktioniert!

- Wenn das Board per USB betrieben wird, ist kein Bootloader nötig! Klipper kann das Board selber updaten → siehe Klipper Update ...
- Endlich mal ein Board ohne diesen unnützen SD-Kartenslot
- Kein Molex Stecker für CAN, keine Ersatzsicherungen

Stromversorgung

- Das Board kann zum initialen Flashen alleine über den USB-C Port versorgt werden. Das Flashen funktioniert natürlich auch, wenn das Board über 24V betrieben wird.
- Es gibt keinen dedizierten Jumper für die 5V Versorgung.
- Im Betrieb wird das Board mit 24V versorgt (Anschluss BOARD + 24V -)
- Für die beiden TMC5160 muss über dem USB-Port extra eine Stromversorgung installiert werden (24-28V).
- Es gibt einen extra Port für die Versorgung des Raspberry Pi. Er liefert 5,06V bei max. 3A somit sollte auch kein "Undervoltage detected" auftreten. Ein Pi 5 wird sich dennoch über die

Verkabelung

- Ganz normale USB-C Verkabelung
- zusätzlich die Stromversorgung
- Ein Raspberry Pi kann direkt auf das Board geschraubt werden. Es liegt eine Adapterplatine bei, die über das 6 polige Kabel mit dem Board verbunden wird. Über diesen Anschluss wird der Raspberry Pi mit 5,06V versorgt. Über diesen Anschluss wird auch gleich TX / RX verbunden mit dem Pi. Damit ist ein Betrieb über UART möglich.

 Das Board kann auch anstatt USB über UART betrieben werden PA9/PA10 sind die entsprechenden Pins dafür. Dafür muss die Firmware neu kompiliert werden!

- Das Board in den DFU Modus bringen
 - $\circ \text{dmesg} \text{HW}$
 - Die Boot Taste (SW2) am Board gedrückt halten und dabei das Board über USB mit dem SBC verbinden

Wenn das Board schon über 24V angeschlossen ist geht auch folgendes **Boot Taste** (SW2) gedrückt halten, **Reset Taste** (SW1) einmal drücken und loslassen, dann die **Boot Taste** (SW2) loslassen.

 \circ Das Board meldet sich mit <code>Product: DFU in FS Mode</code>

```
pi@Pi3Test:/boot $ dmesg -HW
[Jan23 18:39] usb 1-1.4: USB disconnect, device number 20
[ +0.805709] usb 1-1.4: new full-speed USB device number 21 using
dwc_otg
[ +0.141330] usb 1-1.4: New USB device found, idVendor=0483,
idProduct=df11, bcdDevice=22.00
[ +0.000038] usb 1-1.4: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[ +0.000017] usb 1-1.4: Product: STM32 B00TL0ADER
[ +0.000013] usb 1-1.4: Manufacturer: STMicroelectronics
[ +0.000012] usb 1-1.4: SerialNumber: STM32FxSTM32
```

 $\circ\,$ STRG+C drücken, um die Meldungen zu beenden

Klipper flashen

Hinweis

Wenn das Board mit USB betrieben wird, braucht es keinen extra Bootloader!

```
• cd ~/klipper
```

make menuconfig

```
[*] Enable extra low-level configuration options
Micro-controller Architecture (STMicroelectronics STM32) --->
Processor model (STM32F446) --->
Bootloader offset (No bootloader) --->
Clock Reference (12 MHz crystal) --->
Communication interface (USB (on PA11/PA12)) --->
```

Last update: 2024/02/12 klipper_faq:flash_guide:stm32f446:leviathan_v1.2_usb https://drklipper.de/doku.php?id=klipper_faq:flash_guide:stm32f446:leviathan_v1.2_usb 10:27

Port ermitteln

- Den USB Stecker abziehen
- dmesg HW starten

```
pi@Pi3Test:~/klipper $ dmesg -HW
  [Jan23 19:11] usb 1-1.4: new full-speed USB device number 29 using
  dwc otg
  [
     +0.147013] usb 1-1.4: New USB device found, idVendor=1d50,
  idProduct=614e, bcdDevice= 1.00
     +0.000037] usb 1-1.4: New USB device strings: Mfr=1, Product=2,
  [
  SerialNumber=3
     +0.000017] usb 1-1.4: Product: stm32f446xx
  [
     +0.000012] usb 1-1.4: Manufacturer: Klipper
  ſ
     +0.000011] usb 1-1.4: SerialNumber: 350053000851313133353932
  [
  Γ
     +0.008035] cdc_acm 1-1.4:1.0: ttyACM0: USB ACM device
    • Wir brauchen die Information mit tty... also in diesem Fall ttyACMO

    STRG+C drücken, um die Meldungen zu beenden

    Den zugehörigen Link ermitteln

 ls -lR /dev/ | grep -v '\->\s../tty' | grep -e 'tty[[:alpha:]]' -e
 serial
    • Wir brauchen die Info unter /dev/serial/by-id: :
      lrwxrwxrwx 1 root root 13 Nov 11 15:15 usb-
      Klipper stm32f446xx 350053000851313133353932-if00 → ../../ttyACM0

    Achte darauf das am Ende die gleiche tty Bezeichnung steht wie sie im vorherigen Schritt

      ermittelt wurde (hier also ttyACM0)
```

```
    Was wir für die Konfig brauchen ist dann am Ende:
/dev/serial/by-id/usb-Klipper_stm32f446xx_350053000851313133353932-
if00
```

kurzer Test

Ob das Board korrekt mit Klipper läuft, lässt sich mit folgendem Befehl schnell testen: ~/klippy-env/bin/python ~/klipper/klippy/console.py /dev/serial/by-id/usb-Klipper_stm32f446xx_350053000851313133353932-if00 Der Pfad am Ende muss natürlich mit dem übereinstimmen was ihr im vorherigen Schritt ermittelt habt!

Wenn ihr ein connected am Anfang des Textes seht, ist das Board richtig geflasht.

Konfiguration

- cd ~/printer_data/config
- Beispiel Konfiguration Voron 2 wget https://raw.githubusercontent.com/MotorDynamicsLab/Leviathan/master/Klip per_config/voron2_leviathan_v1.2.cfg -0 printer.cfg
- Beispiel Konfiguration Trident
 wget
 https://raw.githubusercontent.com/MotorDynamicsLab/Leviathan/master/Klip
 per_config/trident_leviathan_v1.2.cfg -0 printer.cfg
- nano ~/printer_data/config/printer.cfg

```
[mcu]
##-----
serial: /dev/serial/by-id/usb-
Klipper_stm32f446xx_350053000851313133353932-if00
```

• Die Zeile mit serial entsprechend mit dem ermittelten Pfad von oben anpassen

Klipper Update

Klipper Dienst stoppen

sudo systemctl stop klipper.service

- cd ~/klipper && make menuconfig
 - Die Einstellungen sind genauso wie im Kapitel Klipper flashen
- make flash -j4 FLASH_DEVICE=/dev/ttyACM0
 - Wie man an den Port (hier ttyACM0) kommt, ist hier beschrieben
 - $\circ\,$ Am Ende kann es zu einem Fehler kommen. Davon nicht irritieren lassen. Wichtig ist diese Zeile:
 - File downloaded successfully
- Klipper Dienst starten sudo systemctl start klipper.service
- Sollte sich das Board nicht melden, am besten den Drucker einmal stromlos machen und neu starten.

Last update: 2024/02/12 klipper_faq:flash_guide:stm32f446:leviathan_v1.2_usb https://drklipper.de/doku.php?id=klipper_faq:flash_guide:stm32f446:leviathan_v1.2_usb 10:27

Sonstiges

Diese Punkte sind nicht immer Bestandteil vom YouTube Video, aber nützlich 🤜

Auslieferungszustand

- Klipper v0.11.0-148-g52f4e20c
- kein Bootloader

ST-Link (SWD)

Das Board verfügt über einen SWD Port. Mit einem entsprechenden ST-Link kann das Board auch direkt geflasht werden.

Extra Port

Das Board hat einen Expansion Port unter dem USB-C Port. Der Port kann im Grunde für alle möglichen Erweiterungen genutzt werden.

ADXL345 (Input Shaper)

Ein ADXL345 Sensor für Input Shaper kann direkt an das Board angeschlossen werden.

• Anschluss am Expansion Port

ADXL345 Pin	Leviathan V1.2 Expansion Port Pin	STM32	Pin
GND	GND (3 / 4 / 27 / 28)		
VCC	+5V (1 / 2)		
CS	SPI2_CS (26)	PB12	
INT1	N/A		
INT2	N/A		
SDO	SPI2_MISO (24)	PB14	
SDA	SPI2_MOSI (23)	PB15	
SCL	SPI2_CLK (25)	PB13	

• Konfig Anpassung

[adxl345]

axes_map	:	х,у,	z										
cs_pin	:	PB12											
spi_bus	:	spi2											
[resonance te	st	erl											
accel_chip	:	adxl3	345										
probe_points	:	150,	150,	20	#	Center	of	your	bed,	raised	up a	ЭÌ	little

- Test in der MainSail Konsole mittels ACCELEROMETER_QUERY Als Ergebnis sollte in etwa sowas kommen: accelerometer values (x, y, z): -1110.308913, 1184.329507, 11414.822920
 Sollte der Test felgenden Fehler bringen ist die Verkabelung felschl
- Sollte der Test folgenden Fehler bringen ist die Verkabelung falsch! Invalid adxl345 id (got 0 vs e5)

STM32 Temperatur

Der interne Temperatur Sensor des STM32 kann mit folgendem Konfig Schnibsel ausgelesen werden:

[temperature_sensor Levi]
sensor_type : temperature_mcu
sensor_mcu : mcu

Links

- Github Repo https://github.com/MotorDynamicsLab/Leviathan/tree/master
- LDO Infoseite https://www.ldomotion.com/p/guide/VORON-Leviathan-V12
- Manual https://github.com/MotorDynamicsLab/Leviathan/blob/e4fb6d27322140ee2509b9061d3bbc16aa 7cf56c/Manual/Leviathan_V1.2_Manual.pdf
- Schaltplan https://github.com/MotorDynamicsLab/Leviathan/blob/e4fb6d27322140ee2509b9061d3bbc16aa 7cf56c/Schematic/Leviathan_V1.2.pdf
 - Klipper Konfig

Voron :

https://github.com/MotorDynamicsLab/Leviathan/blob/e4fb6d27322140ee2509b9061d3bbc16aa 7cf56c/Klipper_config/voron2_leviathan_v1.2.cfg

Trident :

https://github.com/MotorDynamicsLab/Leviathan/blob/e4fb6d27322140ee2509b9061d3bbc16aa 7cf56c/Klipper_config/trident_leviathan_v1.2.cfg Permanent link:

https://drklipper.de/doku.php?id=klipper_faq:flash_guide:stm32f446:leviathan_v1.2_usb

9/9

Last update: 2024/02/12 10:27