Mellow Fly-Super8Pro (USB)

1/8

Schrittweise Anleitung, um das Mellow **Fly-Super8Pro** Board über über **USB** in Betrieb zu nehmen.

Mellow Fly-Super8Pro

YouTube Video #1xx

Hinweise

- SBC bedeutet in der Anleitung Single Board Computer. Also meistens wohl ein Raspberry Pi.
- Es wird davon ausgegangen das auf dem SBC Klipper und MainSail eingerichtet ist.
- Ein Zugang zum SBC über SSH ist notwendig!
- Wenn dmesg -HW einen Fehler bringt, einfach dmesg -Hw verwenden.

• Der SD-Slot ist bei diesem Controller komplett überflüssig

Verkabelung

Stromversorgung

- Der Jumper direkt hinter dem USB-C Anschluss muss gesetzt sein wenn das Board nur am USB Port hängt und **nicht an 24V**.
- • Der Jumper muss im normalen Betrieb gezogen werden!
- Betrieb
 - Im Betrieb wird das Board mit 24V versorgt (Anschluss POWER Board / + -)
 - Der Jumper für 5V muss gezogen sein!
- Firmware flashen
 - Das Board wird nicht mit 24V versorgt.
 Den Jumper muss gesteckt sein!
 - Das Board wird **mit 24V betrieben**.
 - Den Jumper muss gezogen sein!

Versorgung Raspberry Pi

Auf dem Board ist unter dem USB Port ein 4 Port Connector mit 5V, GND und Tx/Rx. Hier könnte ein Raspberry Pi direkt versorgt und mit dem Board betrieben werden. Das führt aber fast immer zu Unterspannungswarnungen. Besser mit USB Verkabeln und den Pi extra versorgen!

48V Anschluss

TBD

- Alle Treiber können per Jumper selektierbar mit 24V oder 48V betrieben werden.
- Die 48V am Eingang werden nur für die Treiber genutzt!
- 24V müssen trotzdem anliegen!

Bootloader sichern

Das Board wird mit RepRap Firmware ausgeliefert (Stand 29.11.2024).

```
pi@TestPi4:~ $ dmesg -HW
[Nov29 17:53] usb 1-1.1: new full-speed USB device number 13 using xhci_hcd
[ +0.111909] usb 1-1.1: New USB device found, idVendor=16c0,
idProduct=27dd, bcdDevice= 1.00
```

```
[ +0.000017] usb 1-1.1: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[ +0.000004] usb 1-1.1: Product: RepRapFirmware
[ +0.000004] usb 1-1.1: Manufacturer: RepRapFirmware
[ +0.000003] usb 1-1.1: SerialNumber: 2F0015000951313430323835
[ +0.005831] cdc acm 1-1.1:1.0: ttyACM1: USB ACM device
```

Es ist ein Bootloader im Flasch und die Firmware startet ab 0x20000h (128k). Ein Abzug (inkl. Bootloader) kann hier geladen werden: orgfirmware_29_11_2024.zip Das Backup kann mittels ST-Link oder DFU Mode wieder aufgespielt werden. Es muss nur an Adresse 0x0 geschrieben werden!

DFU Modus

Das Board in den DFU Modus bringen:

- Im Terminal folgendes eingeben dmesg HW
- Auf dem Board ist direkt am Controller ein 2 Pin Header mit der Beschriftung "BT0/3.3V". Hier muss ein Jumper gesetzt werden. Dann das Board 1x stromlos machen oder einfach die Reset Taste drücken.
- Das Board meldet sich mit Product: STM32 BOOTLOADER oder Product: DFU in FS Mode

```
pi@Pi4Test:~ $ dmesg -HW
[Nov29 17:59] usb 1-1.1: new full-speed USB device number 15 using
xhci_hcd
[ +0.101997] usb 1-1.1: not running at top speed; connect to a high
speed hub
[ +0.006042] usb 1-1.1: New USB device found, idVendor=0483,
idProduct=df11, bcdDevice= 2.00
[ +0.000024] usb 1-1.1: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[ +0.000013] usb 1-1.1: Product: DFU in FS Mode
[ +0.000010] usb 1-1.1: Manufacturer: STMicroelectronics
[ +0.000010] usb 1-1.1: SerialNumber: 354D325F3431
```

• STRG+C drücken, um die Meldungen zu beenden

Klipper flashen

Hinweis

Wenn das Board mit USB betrieben wird, braucht es keinen extra Bootloader!

- cd ~/klipper
- make menuconfig

[*] Enable extra low-level configuration options Micro-controller Architecture (STMicroelectronics STM32) --->

```
    Kipper Hashen
dfu-util -R -a 0 -s 0x08000000:mass-erase:force -D
~/klipper/out/klipper.bin
Das Ergebnis sollte sein File downloaded successfully
```

Port ermitteln

- Den USB Stecker abziehen
- dmesg HW starten und USB wieder anstecken

```
pi@TestPi5:~/klipper $ dmesg -HW
[Sep 4 07:56] usb 3-1: USB disconnect, device number 10
[
  +0.437458] usb 3-1: new full-speed USB device number 11 using xhci-
hcd
  +0.190009] usb 3-1: New USB device found, idVendor=1d50,
[
idProduct=614e, bcdDevice= 1.00
  +0.000005] usb 3-1: New USB device strings: Mfr=1, Product=2,
Γ
SerialNumber=3
  +0.000002] usb 3-1: Product: stm32h723xx
Γ
  +0.000002] usb 3-1: Manufacturer: Klipper
Γ
[ +0.000001] usb 3-1: SerialNumber: 31000E000951323530343536
[ +0.241050] cdc acm 3-1:1.0: ttyACM0: USB ACM device
```

- $\circ\,$ Wir brauchen die Information mit tty... also in diesem Fall ttyACM0
- $\circ\,$ STRG+C drücken, um die Meldungen zu beenden
- Den zugehörigen Link ermitteln

```
ls -lR /dev/ | grep -v '\->\s../tty' | grep -e 'tty[[:alpha:]]' -e
serial
```

O Wir brauchen die Info unter /dev/serial/by-id::
 lrwxrwxrwx 1 root root 13 Mar 2 06:59 usb Klipper stm32h723xx 31000E000951323530343536-if00 → ../../ttyACM0

• Achte darauf das am Ende die gleiche tty Bezeichnung steht wie sie im vorherigen Schritt ermittelt wurde (hier also ttyACM0)

```
    Was wir für die Konfig brauchen ist dann am Ende:
/dev/serial/by-id/usb-Klipper_stm32h723xx_31000E000951323530343536-
if00
```

kurzer Test

Ob das Board korrekt mit Klipper läuft, lässt sich mit folgendem Befehl schnell testen: ~/klippy-env/bin/python ~/klipper/klippy/console.py /dev/serial/by-id/usb-Klipper stm32h723xx 31000E000951323530343536-if00

Der Pfad am Ende muss natürlich mit dem übereinstimmen was ihr im vorherigen Schritt ermittelt habt!

Wenn ihr ein **connected** am Anfang des Textes seht, ist das Board richtig geflasht.

5/8

```
INF0:root:Starting serial connect
Loaded 105 commands (v0.11.0-205-g5f0d252b / gcc: (15:8-2019-q3-1+b1) 8.3.
+rpi1+14) 2.34)
MCU config: ADC_MAX=4095 BUS_PINS_i2c1_PA9_PA10=PA9,PA10 BUS_PINS_i2c1_PB6
10,PB11 BUS_PINS_i2c2_PB13_PB14=PB13,PB14 BUS_PINS_i2c3_PB3_PB4=PB3,PB4 BUS
,PB15,PB13 BUS_PINS_spi2a=PC2,PC3,PB10 BUS_PINS_spi3=PB4,PB5,PB3 CLOCK_FRE0
ÉRVE PINS crystal=PF0,PF1 STATS SUMSQ BASE=256 STEPPER BOTH ÉDGE=1
                                        connected
003.909: stats count=373 sum=462028 sumsg=4662247
```

Abbrechen kann man die Abfrage mittels STRG + C.

Konfiguration

TBD

- cd ~/printer data/config
- ACHTUNG NOCH KEINE AKTUELLE KONFIG

```
Beispiel Konfiguration
waet
```

```
https://raw.githubusercontent.com/FYSETC/FYSETC-SPIDER/main/firmware/Kli
pper/printer.cfg -0 printer.cfg
```

nano ~/printer data/config/printer.cfg

```
[mcu]
serial: /dev/serial/by-id/usb-
Klipper stm32f446xx 390028000950315239323320-if00
```

Die Zeile mit serial entsprechend mit dem ermittelten Pfad von oben anpassen

Klipper Update

- Klipper Dienst stoppen sudo systemctl stop klipper.service
- cd ~/klipper && make menuconfig Die Einstellungen sind genauso wie im Kapitel Klipper flashen
- make flash -j4 FLASH DEVICE=/dev/ttyACM0
 - Wie man an den Port (hier ttyACM0) kommt, ist hier beschrieben
 - Am Ende kann es zu einem Fehler kommen. Davon nicht irritieren lassen. Wichtig ist diese

- Zeile: File downloaded successfully
- Klipper Dienst starten sudo systemctl start klipper.service
- Sollte sich das Board nicht melden, am besten den Drucker einmal stromlos machen und neu starten.

Sonstiges

Diese Punkte sind nicht immer Bestandteil vom YouTube Video, aber nützlich

ST-Link (SWD)

Das Board verfügt über einen SWD Port. Mit einem entsprechenden ST-Link kann das Board auch direkt geflasht werden.

- 3V3 → 3,3V Anschluss
- G \rightarrow Masse Anschluss
- IO \rightarrow SWDIO vom ST-Link
- CLK \rightarrow SWCLK vom ST-Link

ADXL345 (Input Shaper)

Ein ADXL345 Sensor für Input Shaper kann direkt an das Board angeschlossen werden.

ADXL345 Pin	Spider Board (SPI1)	STM32 Pin
GND	GND	
VCC	+5V	
CS	CS	PA4
INT1	N/A	
INT2	N/A	
SDO	MISO	PA6
SDA	MOSI	PA7
SCL	CLK	PA5

• Konfig Anpassung

```
[adxl345]
axes_map : x,y,z
cs_pin : PA4
spi_bus : spi1
[resonance_tester]
accel_chip : adxl345
probe_points : 150, 150, 20 # Center of your bed, raised up a little
```

- Test in der MainSail Konsole mittels ACCELEROMETER_QUERY Als Ergebnis sollte in etwa sowas kommen: accelerometer values (x, y, z): -1110.308913, 1184.329507, 11414.822920
- Sollte der Test folgenden Fehler bringen ist die Verkabelung falsch! Invalid adxl345 id (got 0 vs e5)

Last update: 2024/11/29 klipper_faq:flash_guide:stm32h723:mellow_fly-super8pro https://drklipper.de/doku.php?id=klipper_faq:flash_guide:stm32h723:mellow_fly-super8pro&rev=1732900667 18:17

STM32 Temperatur

Der interne Temperatur Sensor des STM32 kann mit folgendem Konfig Schnibsel ausgelesen werden:

[temperature_sensor Levi]
sensor_type : temperature_mcu
sensor_mcu : mcu

Links

- https://mellow-3d.github.io/fly_super8_pro_h723_general.html
- https://mellow.klipper.cn/en/docs/ProductDoc/MainBoard/fly-super/fly-super8-pro/
- Github Repo https://github.com/Mellow-3D/Fly-Super8Pro
- Schaltplan https://github.com/Mellow-3D/Fly-Super8Pro/blob/0b982743ea8ddf187300ba3878263ac45f9bf4 0b/Hardware/Super8Pro_Schematic.pdf
- Klipper Konfig
 TBD !

From: https://drklipper.de/ - **Dr. Klipper Wiki**

Permanent link: https://drklipper.de/doku.php?id=klipper_faq:flash_guide:stm32h723:mellow_fly-super8pro&rev=1732900667

Last update: 2024/11/29 18:17

