Rook - Elektronik & Software

YouTube Video #60

Vorgehen

- Heizbett verkabeln
 - 230V Matte, Thermistor
 - Z Endschalter
 - Schutzleiter ans Bet
 - Anschluss für SSR raus legen
 - Z Stepper mit raus legen
- 24V Verkabeln
 - Pi und 5V Versorgung anbauen
 - Pi mit Strom
 - Druckerboard mit Strom
- Pi Test inkl. Druckerboard per USB
- Stepper verkabeln
- Durckkopf
 - RGB später
 - Touch Sensor später
 - $\circ\,$ Lüfter, Hotend, Thermistor Hotend
- Einbau EBB42
- Einbau U2C
- CAN verkabeln inkl. 24V
- Kopfsensoren auflegen

Software

- Image von BTT auf SD Karte https://github.com/bigtreetech/CB1
 Anpassen für Wlan
- CAN Modul mit candelight neu flaschen http://www.drklipper.de/doku.php?id=videos:49_-_klipper_faq_-_can_-_usb_buskoppler → candelight (STM32G0B1)

Last update: 2023/10/20 projekte:rook:60_-_rook_-_elektronik_software https://drklipper.de/doku.php?id=projekte:rook:60_-_rook_-_elektronik_software 09:26

- EBB42 neu flashen mit 1000000 CAN bus speed https://github.com/bigtreetech/EBB
- CAN einrichten sudo nano /etc/network/interfaces.d/can0

allow-hotplug can0 iface can0 can static bitrate 1000000 up ifconfig \$IFACE txqueuelen 1024

Board suchen

```
biqu@BTT-CB1:~/klipper$ ~/klippy-env/bin/python
~/klipper/scripts/canbus_query.py can0
Found canbus_uuid=539892be834d, Application: Klipper
Total 1 uuids found
```

- Updates einspielen
- printer.cfg grundlegend aufbauen
 - Extra cfg für Pi MCU https://www.klipper3d.org/RPi_microcontroller.html https://github.com/Klipper3d/klipper/blob/master/config/sample-raspberry-pi.cfg
 - Extra cfg für EBB42 https://github.com/bigtreetech/EBB/blob/master/EBB%20CAN%20V1.0%20(STM32F072)/s ample-bigtreetech-ebb-canbus-v1.0.cfg
 - Extra cfg für SKR MINI E3 V2.0 Konfig vorhanden in ~/klipper/config/generic-bigtreetech-skr-mini-e3-v2.0.cfg https://github.com/Klipper3d/klipper/blob/master/config/generic-bigtreetech-skr-mini-e3-v2.0.cfg
 - \circ Wichtig: Extruder aus der SKR Mini Konfig raus sonst \rightarrow Fehler TMC uart rx and tx pins must be on the same mcu

Motoren

- ## Connected to X-MOT (B Motor) [stepper_x]
- ## Connected to Y-MOT (A Motor) [stepper_y]

Inbetriebnahme

Heizbett

• Prüfen, ob der Thermistor im Heizbett funktioniert.

- Richtigen Typen für Thermistor in der Config eintragen.
- Erst dann einschalten und schauen, ob das SSR richtig schaltet, wenn das Bett heizen sollte.
 - sieht man an der LED vom SSR
- Wenn das geht, ausschalten und Sicherung für das Heizbett rein (1A Flink)

Z Endstop

- Z Endstop testen mit QUERY_ENDSTOPS
- Der Endstop muss z:open sein im nicht geschalteten Zustand
 Wenn hier z:TRIGGERED steht, den Pin in der Konfig mit ! drehen
- Endstops X / Y bleiben erstmal ungeachtet wegen Sensorloess Homing auf X / Y

Schrittmotoren testen

- Verkabelung überprüfen bezüglich der Spulen

 Nachsehen was die Motoren haben und wie das Board verdrahtet ist!
- STEPPER_BUZZ STEPPER=stepper_x STEPPER_BUZZ STEPPER=stepper_y STEPPER_BUZZ STEPPER=stepper_z STEPPER_BUZZ STEPPER=extruder
- • Die Motoren müssen ruckelfrei laufen. Wenn dem nicht so ist, sind sie vermutlich falsch verkabelt. In dem Fall leifern die TMC Treiber auch einen Error.

Schrittmotoren Richtung testen

TBD

• force_move aktivieren

```
[force_move]
enable_force_move: true
# Set to true to enable FORCE_MOVE and SET_KINEMATIC_POSITION
# extended G-Code commands. The default is false.
```

- G91 absetzen für Inkrementellen Stepper Betrieb
- FORCE_MOVE STEPPER=stepper_x DISTANCE=1 VELOCITY=20
- eher mit SET_KINEMATIC_POSITION X=0 Y=0 testen → setzt absolute Pos auf den Wert und enabled die Motoren
 - dann G0 X10, G0 Y10, G0 Z1 ...
- mit Bild vergleichen ob die Bewegung stimmt

VORON V0 STEPPER LOCATIONS AND CONFIGURATION GUIDE

VORONDESIGN.COM

 ggf. stepper_x und stepper_y in der Konfig tauschen um die Stepper zu tauschen (anstatt Kabel tauschen)

XY Sensorless Homing

• Links

https://docs.vorondesign.com/community/howto/clee/sensorless_xy_homing.html https://mmone.github.io/klipper/Sensorless_Homing.html

Vorbereitungen

- X und Y Endstops d
 ürfen nicht am Board angeschlossen sein (sonst funktioniert Sensorless Homing nicht !)
- Die DIAG Jumper für X und Y Achse müssen gesetzt sein

• Klipper Config Änderungen (immer für X und Y Stepper !)

- Der angegebene Pin von endstop_pin wandert in den TMC2209 Bereich vom Stepper mit Pullup:
 - [stepper_x] endstop_pin: $PCO \rightarrow [tmc2209 stepper_x]$ diag_pin: ^PCO
- endstop_pin wird virtuell
 - vorher:[stepper_x] endstop_pin: PC0, nachher:[stepper_x] endstop_pin: tmc2209_stepper_x:virtual_endstop
- Neuer Eintrag in [tmc2209 stepper_x] driver_SGTHRS: 255
- homing_retract_dist auf 0 setzen : [stepper_x] homing_retract_dist: 0 https://www.klipper3d.org/TMC_Drivers.html?h=homing_retract_dist#configure-printercfgfor-sensorless-homing
- homing_speed auf die Hälfte der rotation_distance setzen : [stepper_x] homing_speed: 20

• StallGuard threshold ermitteln

- For TMC2209, start with SET_TMC_FIELD FIELD=SGTHRS STEPPER=stepper_x VALUE=255 in the console. Start with the most sensitive value for the StallGuard threshold based on which kind of TMC driver you're using (255 for TMC2209, or -64 for TMC2130/TMC2660/TMC5160).
- $\,\circ\,$ Try running G28 X0 to see if the toolhead moves along the X axis.
 - If your toolhead moves all the way to the end of the rail, IMMEDIATELY HIT THE EMERGENCY STOP BUTTON.

Go back and double-check that you have configured your hardware and the Klipper sections above correctly. Ask on Discord if you need help.

- When running the G28 X0 or G28 Y0 command, the toolhead WILL move a millimeter or so before it triggers the virtual endstop. This is normal.
- Assuming that the toolhead moved a millimeter or so and then stopped, change the VALUE to decrease the sensitivity by 5-10, try again, and keep going until you find the first value that successfully homes your printer. The toolhead should gently tap the edge of travel and then stop.
- $\circ\,$ Follow the Klipper instructions on fine-tuning the value once your toolhead is homing successfully on this axis. Make sure you run
 - G91
 - G1 X-10 to back the toolhead off after hitting the end of the rail (assuming you're homing to the maximum X value) or else homing the other axis will not work properly.
- Update the driver_SGTHRS or driver_SGT value with your new StallGuard threshold.
- TBD

Rest einstellen

- Prüfen das der Hotend Lüfter richtig rum läuft
- Bauteil Lüfter Funktionstest
- Thermistor Temperatur checken
- Hotend PID
 - Bauteil Kühler auf 25% setzen → M106 S64
 - PID_CALIBRATE HEATER=extruder TARGET=210 (vorwiegend PLA)
 - \circ Speichern \rightarrow SAVE_CONFIG
- Bett PID
 - PID_CALIBRATE HEATER=heater_bed TARGET=60 (vorwiegend PLA)
 - Speichern \rightarrow SAVE_CONFIG

- Extruder Richtung prüfen
- Extruder Kalib → TBD von Doku übernehmen
- Bettr leveln

0

- [stepper_z] die Endwerte hoch setzen größer als es ist
 - position_endstop : 150.0
 - position_max : 150
 - Achtung: In [homing_override] die Position anpassen! \rightarrow G1 Z140
- Jetzt kann man das Bett nahe an die Nozzel fahren
 - G1 Z140 ... Und dann die Zahl runter ...
 - Dann den Wert der über bleibt vom Max abziehen …
 - Beim Max Endwert +2mm
- MANUAL_PROBE
- Printerstartpla einfügen ! TBD

From: https://drklipper.de/ - **Dr. Klipper Wiki**

Permanent link: https://drklipper.de/doku.php?id=projekte:rook:60_-_rook_-_elektronik_software

VORSICHTIG

Last update: 2023/10/20 09:26