2026/02/02 06:53 1/2 RealTime (RT) Kernel

RealTime (RT) Kernel

basierend auf : https://www.raspberrypi.com/documentation/computers/linux_kernel.html#building

Compilieren

e sudo apt install git bc bison flex libssl-dev make libncurses5-dev #I
think this is all the tools required

e mkdir kernel && cd kernel/

e git clone --depth=1 --branch rpi-6.12.y
https://github.com/raspberrypi/linux

e wget
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/6.12/patch-
6.12.39-rtll.patch.gz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/6.12/

e cd linux/

e zcat ../patch-6.12.39-rtll.patch.gz | patch -pl --dry-run #check the patch
fits

e zcat ../patch-6.12.39-rtll.patch.gz | patch -pl

e KERNEL=kernel8

e make ARCH=arm64 bcm2711 defconfig

e make ARCH=arm64 menuconfig

o General setup --->

o Preemption Model (Preemptible Kernel (Low-Latency
Desktop)) --->
[*] Fully Preemptible Kernel (Real-Time)
[1 Preemption behaviour defined on boot

o CPU Power Management aus !
o Beim Exit Config Save - Yes
e nano .config
CONFIG_LOCALVERSION="-V8 DrKlipper RT"

o * Hier auf gar keinen Fall Leerzeichen einbauen. Gibt sonst am Ende Compile und
Kopierfehler!
e time make -j6 ARCH=arm64 Image.gz modules dtbs
o CPU Cores * 1,5 -» nproc

Lokale Installation

echo $KERNEL sudo make modules_install sudo cp arch/arm64/boot/dts/broadcom/*.dtb /boot/ sudo
cp arch/arm64/boot/dts/overlays/*.dtb* /boot/overlays/ sudo cp arch/arm64/boot/dts/overlays/README
/boot/overlays/ sudo cp arch/arm64/boot/Image.gz /boot/$KERNEL.img

Dr. Klipper Wiki - https://drklipper.de/

https://www.raspberrypi.com/documentation/computers/linux_kernel.html#building
https://github.com/raspberrypi/linux
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/6.12/patch-6.12.39-rt11.patch.gz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/6.12/patch-6.12.39-rt11.patch.gz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/6.12/

Last update: 2025/07/27 05:28 projekte:sekwai:rt_kernel https://drklipper.de/doku.php?id=projekte:sekwai:rt_kernel&rev=1753586893

Kopier Installation

e Der erste Part passiert auf einem Raspberry Pi 4 - Kompilierzeit ca. 2 Stunden
e USB Stick mounten
sudo mkdir /mnt/copy
sudo mount -t ext4 /dev/sdbl /mnt/copy
sudo chown -R pi:pi /mnt/copy
e Module kopieren
sudo make ARCH=arm64 INSTALL MOD PATH=/mnt/copy modules install
e Overlays und Kernel kopieren
sudo mkdir -p /mnt/copy/boot/firmware/overlays
sudo cp arch/arm64/boot/Image.gz /mnt/copy/boot/firmware/$KERNEL. img
sudo cp arch/armé64/boot/dts/broadcom/*.dtb /mnt/copy/boot/firmware/
sudo cp arch/arm64/boot/dts/overlays/*.dtb*
/mnt/copy/boot/firmware/overlays/
sudo cp arch/armé4/boot/dts/overlays/README
/mnt/copy/boot/firmware/overlays/
e sudo umount /mnt/copy/
e Der zweite Part dann auf dem Raspberry Pi Zero 2W

Links

https://www.raspberrypi.com/documentation/computers/linux_kernel.html
Ursprung: https://forums.raspberrypi.com/viewtopic.php?t=344994
https://blog.emlid.com/raspberry-pi-real-time-kernel/

ISO erstellen mit RT Kernel

https://github.com/remusmp/rpi-rt-kernel

From:
https://drklipper.de/ - Dr. Klipper Wiki

Permanent link: :
https://drklipper.de/doku.php?id=projekte:sekwai:rt_kernel&rev=1753586893 -

Last update: 2025/07/27 05:28

https://drklipper.de/ Printed on 2026/02/02 06:53

https://www.raspberrypi.com/documentation/computers/linux_kernel.html
https://forums.raspberrypi.com/viewtopic.php?t=344994
https://blog.emlid.com/raspberry-pi-real-time-kernel/
https://github.com/remusmp/rpi-rt-kernel
https://drklipper.de/
https://drklipper.de/doku.php?id=projekte:sekwai:rt_kernel&rev=1753586893

	RealTime (RT) Kernel
	Compilieren
	Lokale Installation
	Kopier Installation

	Links

