2026/01/13 03:17 1/9 seKwal

seKwal

Absolut! Hier ist eine umfassende Projektdokumentation, die alle bisher gesammelten Informationen
zusammenfasst und versucht, eine detaillierte Anleitung fur Ihr DIY-Segway-Projekt zu geben.

Probleme

BNOO085 nicht auf 100Hz gestellt - Test mit SerialPlot - Pitch immer 4-5 Werte gleich in der
Kurve

Garbage Collector Probleme bei zu komplexen print Anweisungen - Loop hat immer Spikes -
SerialPlot

Motoren verdreht

1 Motor invertiert

Looptime falsch berechnet (es war nicht der ganze Code der Loop in der Zeitberechnung)
sleep_ms anstelle von sleep_us - ungenaue Verzogerung der Looptime !

Tuning The final Step is to Tune the PID loop Kp, Ki & Kd parameters.

A good starting point is to slowly increase Kp until the robot oscillates around the balance point and
can catch a fall. Next, start Kd at around 1% the value of Kp and increase slowly until the oscillations
disappear and the robot glides smoothly when pushed. Finally, start with Ki around 20% of Kp and
vary until the robot “overshoots” the setpoint to actively catch a fall and return to vertical.

Links

e https://learn.pimoroni.com/article/overclocking-the-pico-2

e https://github.com/dobodu/BOSCH-BNO085-12C-micropython-library
Projektdokumentation: DIY Segway mit RP2350 und MessKi-Integration
Version: 0.1 (Entwurf) Datum: 26. Mai 2025
1. Projektiibersicht und Ziele

1.1. Projektidee Entwicklung eines selbstbalancierenden, zweiradrigen Fahrzeugs (Segway-ahnlich)
unter Verwendung eines Raspberry Pi RP2350 Mikrocontrollers fur die Echtzeit-Regelung und der
bestehenden “MessKi”-Software fur Ubergeordnete Steuerung, Parametrierung, Datenerfassung und
Visualisierung.

1.2. Kernziele * Realisierung eines funktionierenden, selbstbalancierenden Fahrzeugs. * Nutzung
von MicroPython auf dem RP2350 fur die Regelung. * Nahtlose Integration mit der MessKi-Software
Uber eine serielle/USB-Schnittstelle. * Implementierung einer sicheren und intuitiven
Steuerungsmethode. * Modularer Aufbau flr einfache Wartung und Erweiterung.

1.3. Angestrebte Funktionen * Automatische Balance im Stand und wahrend der Fahrt. *

Dr. Klipper Wiki - https://drklipper.de/

https://learn.pimoroni.com/article/overclocking-the-pico-2
https://github.com/dobodu/BOSCH-BNO085-I2C-micropython-library

Last update: 2025/06/27 03:49 projekte:sekwai:start https://drklipper.de/doku.php?id=projekte:sekwai:start

Steuerung von Geschwindigkeit und Richtung durch den Fahrer. * Fahrererkennung als
Sicherheitsmerkmal (Dead Man's Switch). * Ubertragung von Telemetriedaten (Neigungswinkel,
Geschwindigkeit, Batteriestatus etc.) an MessKi. * Empfang von Steuerparametern (z.B. PID-Werte,
Geschwindigkeitslimits) von MessKi. * Live-Visualisierung der Segway-Daten Uber das MessKi-
Webinterface. * Logging von Fahr- und Sensordaten fur Analyse und Optimierung. * Not-Aus-Funktion.

2. Systemarchitektur

2.1. Komponenteniibersicht * Fahrzeugbasis: Rahmen, Rader (Hoverboard), Standplattform. *
Antriebseinheit: 2x Hoverboard-Motoren mit integrierten Encodern, 2x Hoverboard-Motorcontroller.
* Sensorik: IMU (BNOO085), Fahrererkennungssensoren. * Steuereinheit (Low-Level): Raspberry Pi
RP2350. * Steuereinheit (High-Level & Ul): PC/Server mit laufender MessKi-Software. *
Kommunikationslink: USB-Kabel (RP2350 als CDC-Device & MessKi-Host). * Stromversorgung:
Hoverboard-Batterie, Step-Down-Konverter fur RP2350 & Sensorik.

2.2. Aufgabenverteilung
* RP2350 (Echtzeit-Controller, MicroPython):

e Auslesen des BNOO85 IMU-Sensors (Neigung, Winkelgeschwindigkeit).
e Implementierung des Balance-Algorithmus (PID-Regler) mit hoher Frequenz (Ziel: >100 Hz).
e Auslesen der Fahrererkennungssensoren.
» Auslesen der Lenk-Input-Sensoren (Drucksensoren oder Potentiometer).
e Berechnung der Motorsteuerbefehle basierend auf Balance, Fahrer-Input und MessKi-Befehlen.
e Ansteuerung der Hoverboard-Motorcontroller Uber UART.
e Implementierung von Sicherheitslimits (max. Neigung, max. Geschwindigkeit).
e Serielle Kommunikation mit MessKi:
o Senden von Telemetriedaten (Winkel, Geschwindigkeit, Batteriestatus, Motorstrome, etc.).
o Empfangen und Verarbeiten von Steuerbefehlen (Soll-Geschwindigkeit) und Parametern
(PID-Werte, Limits) von MessKi.
o Durchfuhren von Kalibrierungsroutinen.

* MessKi (High-Level Steuerung, Monitoring, Ul, Konfiguration):

e Benutzerschnittstelle (Web-Frontend) fur:
o Anzeige von Live-Telemetriedaten (Winkel, Geschwindigkeit, etc.).
o Einstellen von Parametern (PID-Gains, Max-Speed, Max-Tilt).
o Ausldsen von Kalibrierungsroutinen auf dem RP2350.
o Gamepad-Interface zur optionalen, indirekten Steuerung (z.B. Setzen einer Soll-
Geschwindigkeit, *nicht* direkte Balance-Lenkung).
Neues MessKi-Gerat “Segwaylnterface”:
o Nutzt "Seriallnput™ oder "SCPIUsbInput’ fiir die Kommunikation mit dem RP2350.
o Definiert Channels und Measures fur alle relevanten Segway-Daten.
o Implementiert *@device_action -Methoden zum Senden von Befehlen/Parametern an den
RP2350.
Datenausgabe Uber “WebSocketOutputHandler® an das Frontend.
Datenspeicherung tber "CsvOutputHandler®™ fir Analysen.
Logging von Systemereignissen und Fehlern.

3. Hardwarekomponenten

3.1. Mikrocontroller: Raspberry Pi RP2350 * Board: Raspberry Pi Pico W (oder ein anderes

https://drklipper.de/ Printed on 2026/01/13 03:17

2026/01/13 03:17 3/9 seKwal

RP2350-Board). * Vorteile: Ausreichend Rechenleistung (Dual Cortex-M0+ mit FPU), genug GPIOs,
ADC-Eingénge, 12C- und UART-Schnittstellen, gute MicroPython-Unterstitzung. * Anschluss: Uber
USB an den MessKi-Host-PC.

3.2. Inertial Measurement Unit (IMU): Bosch BNO085 * Modul: Breakout-Board mit BNO085. *
Vorteile: Hochintegrierte Sensor-Fusion-Algorithmen (Hillcrest/CEVA SH-2), liefert stabile
Orientierungsdaten (Quaternionen, Eulerwinkel), entlastet den RP2350. Hohere Update-Raten und oft
bessere Kalibrierung als BNO055. * Anschluss: Uber 12C an den RP2350. * Bibliothek:
[dobodu/BOSCH-BNOO085-12C-micropython-library](https://github.com/dobodu/BOSCH-BNO085-12C-mic
ropython-library)

3.3. Motorisierung: Hoverboard-Motoren und -Controller * Komponenten: 2x Standard
Hoverboard-Radnabenmotoren (meist BLDC mit Hallsensoren) und die zugehdrigen Hoverboard-
Motorcontroller-Platinen (oft zwei separate oder eine kombinierte). * Ansteuerung: Die
Motorcontroller werden typischerweise Uber UART mit einem spezifischen seriellen Protokoll
angesteuert. Das Protokoll beinhaltet oft Befehle fur Geschwindigkeit/Drehnmoment fur jedes Rad.

« |hr "HopfNRoll"-Projekt ist hier eine wertvolle Referenz fiir das Protokoll.
* Verbindung zum RP2350: Uber eine UART-Schnittstelle des RP2350.

e Level Shifter: Unbedingt erforderlich, wenn die Hoverboard-Controller mit 5V Logikpegel
arbeiten und der RP2350 mit 3.3V. Ein bidirektionaler Level-Shifter fir TX/RX ist notwendig.

3.4. Fahrererkennung: FuBschalter / Drucksensoren * Variante A (einfach): FuBschalter

e 2x robuste Mikroschalter oder Endschalter.

e Montage unter den FuBpads, sodass sie bei Belastung schlieRen.

e Anschluss an digitale GPIO-Pins des RP2350 (mit internem oder externem Pull-up/-down
Widerstand).

* Variante B (fortgeschritten): Drucksensoren (FSRs)

2x oder 4x Force Sensitive Resistors (FSRs).

Montage unter den Fullpads.

Anschluss an ADC-Eingange des RP2350 (oft Uber einen Spannungsteiler).
Ermdglicht eine feinere Erkennung und potenziell eine gewichtsbasierte Steuerung.

* Ziel: Motoren nur aktivieren, wenn beide FulSpads belastet sind.

3.5. Lenkmechanismus (Optionen) * Option A: Drucksensoren (wie 3.4B, erweitert fur
Lenkung)

e Mindestens ein FSR pro FuBpad, besser zwei (vorne/hinten) pro Pad.
e Software interpretiert differentielle Druckverteilung zwischen linkem/rechtem Ful§ und
vorderem/hinterem Bereich der Pads als Lenkimpuls.

* Option B: Lenkstange mit Potentiometer

e Mechanische Konstruktion einer neigbaren Lenkstange.
e Ein Dreh-Potentiometer (z.B. 10kQ linear) erfasst den Neigungswinkel der Stange.
e Potentiometer an einen ADC-Eingang des RP2350.

Dr. Klipper Wiki - https://drklipper.de/

https://github.com/dobodu/BOSCH-BNO085-I2C-micropython-library
https://github.com/dobodu/BOSCH-BNO085-I2C-micropython-library

Last update: 2025/06/27 03:49 projekte:sekwai:start https://drklipper.de/doku.php?id=projekte:sekwai:start

* Option C: Joystick direkt am RP2350 (weniger empfohlen fiir die Hauptlenkung)

e Ein kleiner analoger Thumbstick, montiert an einer Festhalte-Struktur.
e X-Achse des Joysticks an einen ADC-Eingang.

3.6. Stromversorgung * Hauptbatterie: Standard Hoverboard Li-lon Akku (typ. 36V, 10S). *
RP2350-Versorgung: Step-Down (Buck) Konverter-Modul, das die 36V der Hauptbatterie auf stabile
5V (far USB-Power-Input des Pico) oder direkt 3.3V (fir VSYS-Pin des Pico) reduziert.

e Der Konverter muss den Strombedarf des RP2350, der IMU und ggf. anderer 3.3V-Komponenten
decken kénnen.

* Verkabelung: Geeignete Kabelquerschnitte, Sicherungen fur den Hauptstromkreis und den Step-
Down-Konverter.

3.7. Optionale Komponenten * Status-LEDs (fUr Betriebszustand, Fehler, Kalibrierung) direkt am
RP2350. * Ein kleiner Summer flr akustische Signale. * Not-Aus-Schalter (Hardware), der die
Stromzufuhr zu den Motoren unterbricht.

3.8. Materialliste (geschatzt, ohne Hoverboard-Basis) * Raspberry Pi RP2350 (Pico W oder
ahnliches) * BNO085 Breakout-Board * 2-4x Fullschalter oder FSRs * Step-Down Konverter (36V -
5V/3.3V) * Bidirektionaler Level Shifter (3.3V e 5V, falls notig fur Hoverboard UART) * Potentiometer
(fur Option 3.5B) oder Joystick-Modul (Option 3.5C) * Kabel, Steckverbinder (JST, Dupont etc.),
Schrumpfschlauch * Lochrasterplatine oder kleine Prototyping-Platine * Gehause fur Elektronik *
Material fr Rahmen/Plattform (Holz, Aluminiumprofile)

4. Software-Implementierung: RP2350 (MicroPython)

4.1. Entwicklungsumgebung * Thonny IDE oder VS Code mit MicroPython-Erweiterung (z.B. Pico-W-
Go). * REPL-Zugriff Gber USB-Serial fur direktes Testen und Debugging.

4.2. Softwarestruktur (RP2350) * "main.py : Hauptprogramm, Initialisierung, Start der
asynchronen Tasks. * “bno085_handler.py" (oder ahnlich): Kapselt die Logik fiir die BNO085-
Bibliothek, liefert aufbereitete Winkeldaten. * “hoverboard_protocol.py": Implementiert das Senden
von Befehlen an die Hoverboard-Controller (inkl. Checksumme). * “pid_controller.py " : Klasse oder
Funktionen flr den PID-Regler. * “config.py : Speichert Kalibrierwerte, PID-Konstanten (ggf. aus Flash
geladen). * "utils.py " : Hilfsfunktionen (z.B. Quaternion-zu-Euler-Umrechnung, Mapping-Funktionen). *
Asynchrone Tasks (" uasyncio’):

» "balance_loop() : Hauptregelkreis (IMU lesen, PID, Motoren ansteuern).

» “messki_communication_loop()": Kommunikation mit MessKi.

 Optional: “sensor_read_loop() : Wenn IMU-Auslesung oder andere Sensorik komplexer ist und
separat laufen soll.

4.3. IMU-Integration (BNO085) * Einbindung der "BOSCH-BNO085-12C-micropython-library". *
Konfiguration der [2C-Schnittstelle auf dem RP2350. * Initialisierung des BNO085. * Aktivierung des
bendtigten Sensor-Reports (z.B. 'BNO_REPORT _GAME_ROTATION VECTOR" fiir Neigung ohne
Magnetfeldeinfluss oder 'BNO_REPORT ROTATION_VECTOR" fur 9-Achsen-Fusion). * Implementierung
einer Funktion “get_raw_bno_pitch_from_sensor()", die den rohen Pitch-Winkel (oder den relevanten
Neigungswinkel) vom Sensor liefert. Dies erfordert das Parsen der Daten aus dem Report der
Bibliothek. * Implementierung der Kalibrierungsroutine (siehe 4.10).

4.4. Balance-Algorithmus (PID-Regler) * Implementierung einer PID-Reglerfunktion oder -klasse.

https://drklipper.de/ Printed on 2026/01/13 03:17

2026/01/13 03:17 5/9 seKwal

e Eingang: "current calibrated tilt_angle’, "target angle" (sollte 0.0 nach Kalibrierung sein).
e Ausgang: Korrekturwert fir die Motorgeschwindigkeit.

* Parameter "KP", “KI*, "KD" (Proportional, Integral, Derivative Anteile). * Berechnung des Fehlers:
“error = target_angle - current_calibrated _tilt_angle’. * Berechnung des Integral-Terms (Summe der
Fehler Gber Zeit), inkl. Anti-Windup. * Berechnung des Differential-Terms (Anderungsrate des Fehlers).
* Loop-Zeit ("dt’) muss bertcksichtigt werden. * “pid_output = (KP * error) + (KI * integral_error) +
(KD * derivative_error)". * Tuning: Die PID-Werte miissen experimentell ermittelt werden. Starten Sie
mit kleinem P, dann D, dann I.

4.5. Motoransteuerung (Hoverboard-Controller) * Konfiguration der UART-Schnittstelle des
RP2350. * Implementierung der Funktion “send_hoverboard command(left_speed, right speed):

e Nimmt Soll-Geschwindigkeitswerte fur linken und rechten Motor (z.B. -1000 bis +1000).
e Erzeugt das korrekte serielle Datenpaket gemaR Hoverboard-Protokoll.
e Berechnet und fligt die erforderliche Checksumme hinzu.
e Sendet das Paket uber UART an die Motorcontroller.
4.6. Fahrererkennung * Funktion "is_rider_present() :
e Liest die Zustande der FuBschalter-GPIOs oder die Werte der FSR-ADCs.
e Gibt "True" zurlick, wenn ein Fahrer erkannt wird (z.B. beide Schalter gedriickt / ausreichender
Druck auf FSRs).
» Wichtig: Der "balance_loop™ darf die Motoren nur aktivieren, wenn ein Fahrer prasent UND das
System kalibriert ist.
4.7. Lenkungslogik * Funktion “read_steering_input_locally() :
e Liest die Werte der Lenksensoren (Drucksensoren oder Potentiometer).
e Wandelt die Rohwerte in einen normalisierten Lenkbefehl um (z.B. -1.0 fur voll links, 0.0 fur
geradeaus, +1.0 fur voll rechts).
* Integration in “balance_loop() :
 ‘steer_effect = normalized_steer input * STEER _SENSITIVITY".
“left_motor cmd = base_speed command - steer effect’.
“right_motor_cmd = base_speed command + steer_effect’.
“base_speed_command™ kommt vom PID-Regler und dem Geschwindigkeits-Sollwert von
MessKi.
"STEER_SENSITIVITY" muss experimentell abgestimmt werden.

4.8. Kommunikation mit MessKi (Protokoll) * RP2350 agiert als serielles Gerat (USB CDC). *
RP2350 -» MessKi (Telemetrie):

* Regelmaliges Senden von Datenpaketen, z.B. als ASCII-Zeilen oder JSON-Strings.

e Format: "KEY1=VALUE1,KEY2=VALUE2\n" oder " {“tilt": 1.23, “vbat”: 35.8}\n"

» Beispiele fur Daten: "calibrated tilt angle’, "raw_pitch’, "motor_left cmd’, “motor right cmd’,
“battery voltage (falls messbar), ‘rider_present status, "current steer input’, "pid_error,
“pid_integral®, “pid_derivative’, “pid_output’.

* MessKi » RP2350 (Befehle/Parameter):

e Format: "CMD:ACTION=VALUE\n" oder "SET:PARAM=VALUE\n"

Dr. Klipper Wiki - https://drklipper.de/

Last update: 2025/06/27 03:49 projekte:sekwai:start https://drklipper.de/doku.php?id=projekte:sekwai:start

 Beispiele:
o "CMD:SPEED=200" (Soll-Geschwindigkeit fir Vorwarts/Riickwarts)
o "SET:KP=12.5"
o "SET:MAX TILT=20.0"
o "CMD:CALIBRATE_NOW"
o "CMD:EMERGENCY_STOP"
 Funktion “process messki command(command_str)" auf dem RP2350 zum Parsen und
Anwenden.

4.9. Sicherheitsfunktionen und Fehlerbehandlung * Maximale Neigung: Wenn
“calibrated_tilt_angle” einen kritischen Wert (iberschreitet (z.B. > 25-30 Grad), Motoren sofort
abschalten oder sanft herunterregein. * IMU-Fehlererkennung: Wenn "get tilt_angle()’ "None’
zurickgibt oder Fehler signalisiert, Motoren stoppen. * Fahrer nicht prasent: Motoren sofort
stoppen. * Kommunikationsverlust zu MessKi: Nach einer bestimmten Zeit ohne “Heartbeat” oder
Befehl von MessKi in einen sicheren Zustand gehen (z.B. Stopp). * Batterie-Unterspannung:
Motoren abschalten, um Tiefentladung zu verhindern (falls Batteriespannung gemessen wird).

4.10. Kalibrierungsroutinen * Winkel-Offset-Kalibrierung:

e Funktion "calibrate_level procedure()" wie zuvor besprochen.

e Auslosbar Uber Taster am Segway oder Befehl von MessKi.

 Speichern des "ANGLE_OFFSET" im Flash (" config.py" oder separate Datei).
e Laden des Offsets beim RP2350-Start.

* Lenkungs-Kalibrierung (falls nétig):

e FUr Potentiometer: Mittelstellung und Maximalausschlage erfassen.
e FUr Drucksensoren: Ruhewerte und Werte bei maximaler Belastung/Neigung erfassen.

5. Software-Implementierung: MessKi-Integration

5.1. Neues MessKi-Gerat: “Segwaylnterface” * Config
(" SegwayConfig(DeviceConfigBase)'):

 “device _class: Literal[“SegwayInterface”] = “SegwaylInterface””

“name: str = “RP2350 Segway Controller””

“input_configs': Liste, die eine "SeriallnputConfig® fir den USB-Port des RP2350 enthalt (Port
muss vom Benutzer eingestellt werden).

e “active_input_uuid": UUID der "SeriallnputConfig".

Felder fur Standard-PID-Werte, Max-Speed, Max-Tilt, die beim Start an den RP2350 gesendet
werden kénnen.

“fetch_interval_sec': Wie oft MessKi aktiv Daten vom RP2350 anfordert (falls Pull-Mechanismus)
oder Verarbeitungsintervall fur empfangene Daten. Eher gering halten, da RP2350 von sich aus
senden sollte.

* Handler (' SegwayHandler(DeviceBase)"):

e * activate() : Stellt sicher, dass der serielle Port gedffnet ist. Sendet ggf. initiale
Konfigurationsparameter an den RP2350.
e *_run_device task()":
o Liest kontinuierlich Daten vom seriellen Input (" await self. read from_active_input()").
o Parst die empfangenen Telemetrie-Strings/JSONs vom RP2350.
o Aktualisiert die entsprechenden Measures in den MessKi-Channels.

https://drklipper.de/ Printed on 2026/01/13 03:17

2026/01/13 03:17 7/9 seKwal

o Holt Gamepad-Daten vom “GamepadHandler'.

o Berechnet daraus eine Soll-Geschwindigkeit (z.B. Vorwarts/Rickwarts basierend auf
einem Stick). Wichtig: Die feine Balance-Lenkung geschieht auf dem RP2350!
MessKi liefert nur den “Wunsch” des Fahrers.

o Sendet die Soll-Geschwindigkeit (und ggf. grobe Lenkrichtung, falls gewlnscht, aber eher
nicht flr Balance) an den RP2350.

» "@device_action® Methoden:

o “set pid_gains(kp: float, ki: float, kd: float) : Sendet "SET:KP=..." etc. an RP2350.

o “set_max_speed(speed: int)’

o “set_max _tilt_angle(angle: float)"

o “trigger_calibration() : Sendet "CMD:CALIBRATE_NOW" an RP2350.

o "send_emergency stop() : Sendet "CMD:EMERGENCY STOP".

o “send_target_speed(speed: int)" (intern von *_run_device_task’ genutzt oder als Action).

5.2. Input-Handler Konfiguration (Serial/USB) * In der "SegwayConfig™ wird eine
“SeriallnputConfig™ definiert. * Der “port” muss vom Benutzer in MessKi auf den korrekten virtuellen
COM-Port / “/dev/ttyACMx" des RP2350 eingestellt werden. * Baudrate, etc. missen mit den
Einstellungen auf dem RP2350 Ubereinstimmen. * "read_mode" in MessKi sollte “readline” sein, wenn
der RP2350 mit Newline terminiert. “terminator’ entsprechend setzen (z.B. "\n").

5.3. Channel- und Measure-Definitionen in MessKi (fiir 'SegwayConfig) * Channel “Segway
Telemetry”:

e "TiltAngle’ (NumericMeasure, Einheit: Grad)

e "AngularVelocity’ (NumericMeasure, Einheit: Grad/s)

e 'BatteryVoltage™ (NumericMeasure, Einheit: V)

» "MotorLeftSpeed” (NumericMeasure, Einheit: RPM oder Einheit vom RP2350)

e "MotorRightSpeed” (NumericMeasure, Einheit: RPM oder Einheit vom RP2350)
e "RiderPresent’ (StringMeasure oder NumericMeasure: “JA"/“NEIN” oder 1/0)

e 'SteeringlnputRaw" (NumericMeasure, Rohwert vom Lenksensor)

e "PIDError’ (NumericMeasure)

e "PIDOutput’™ (NumericMeasure)

e 'RP2350Status” (StringMeasure, z.B. “BALANCING”, “CALIBRATING”, “ERROR")

* Channel “Control Outputs”:

e "TargetSpeedToRP" (NumericMeasure, von MessKi an RP2350 gesendet)
e "TargetSteerToRP" (NumericMeasure, falls MessKi auch Lenkimpulse sendet)

* Channel “PID Parameters”:

e "Param_KP" (NumericMeasure, spiegelt den Wert auf dem RP2350 wider, lesend)
e "Param_KI" (NumericMeasure)
e "Param_KD" (NumericMeasure)

* Qutputs: “WebSocketOutputHandler™ fir alle relevanten Channels, *CsvOutputHandler™ fir
Telemetrie.

5.4. Steuerung uber MessKi (Gamepad, API) * Das Gamepad in MessKi wird *nicht* fir die
direkte Links/Rechts-Balance-Lenkung verwendet. * Es kann verwendet werden, um eine Soll-
Geschwindigkeit (vorwarts/riickwarts) an den RP2350 zu senden. Der *_run_device_task™ im
“SegwayHandler” wiirde z.B. den Y-Achsenwert eines Sticks lesen und als "CMD:SPEED=..." an den

Dr. Klipper Wiki - https://drklipper.de/

Last update: 2025/06/27 03:49 projekte:sekwai:start https://drklipper.de/doku.php?id=projekte:sekwai:start

RP2350 senden. * Die API-Endpunkte (" @device_action’) ermdglichen das Setzen von Parametern
(PID, Limits) und das Auslésen von Aktionen (Kalibrierung, Not-Aus).

5.5. Datenvisualisierung und -logging * MessKi-Webfrontend zeigt Live-Werte aus den “Segway
Telemetry”-Measures an. * Grafische Darstellung von Neigungswinkel, Geschwindigkeiten etc. * CSV-
Logging fur spatere Analyse der Fahrdynamik und PID-Abstimmung.

6. Mechanische Konstruktion

6.1. Rahmen und Plattform * Stabiler Rahmen, der die Hoverboard-Achsen/Motoren aufnimmt. *
Eine Plattform flr den Fahrer, die ausreichend Platz bietet und die Montage der
Fulschalter/Drucksensoren ermdglicht. * Materialien: Aluminiumprofile, Multiplex-Holz, Stahl (je nach
verfugbaren Mitteln und Fahigkeiten). * Schwerpunkt beachten: Der Gesamtschwerpunkt (Fahrer +
Segway) sollte sich maglichst Uber der Radachse befinden.

6.2. Montage der Komponenten * RP2350, BNO085, Step-Down-Konverter, Level-Shifter in einem
geschutzten Gehause unterbringen. * BNO085 maoglichst nahe am Drehzentrum (Radachse) und
vibrationsarm montieren. Die genaue Ausrichtung (X, Y, Z Achsen) muss in der Software
berlcksichtigt werden. * Sichere Montage der Batterie.

6.3. Lenkmechanismus (falls zutreffend) * Drucksensoren: Sauber unter den FuBpads
integrieren, sodass sie zuverlassig auf Gewichtsverlagerung reagieren. * Lenkstange: Stabile
Lagerung der Drehachse, spielfreie Verbindung zum Potentiometer/Encoder. Endanschlage fur die
Lenkstange vorsehen.

6.4. Verkabelung und Stromverteilung * Sorgfaltige Verkabelung mit ausreichenden
Querschnitten, besonders fur die Motorcontroller und die Hauptbatterie. * Zugentlastung fur alle
Kabel. * Ubersichtliche Stromverteilung mit Sicherungen. * Gute Abschirmung fiir Signalleitungen
(IMU, UART), um Stérungen zu vermeiden.

7. Testplan und Inbetriebnahme

SEHR WICHTIG: Bei allen Tests mit Motorkraft auBerste Vorsicht walten lassen! Das
Segway muss immer gesichert sein, um unkontrolliertes Wegfahren oder Umkippen zu
verhindern! Beginnen Sie mit aufgebockten Radern.

7.1. Modultests (RP2350) * BNO085: Daten auslesen, Winkelberechnung prufen, Kalibrierung
testen. Ausgabe Uber Serial an PC. * Hoverboard-Controller: Serielle Befehle senden, Motoren
manuell drehen lassen (langsam!), Drehrichtung prufen. * Fahrererkennung: Funktion der

Schalter/FSRs prufen. * Lenksensorik: Rohwerte der Drucksensoren/Potis auslesen und prufen.

7.2. Statische Balance-Tests (gesichert) * Segway aufbocken, sodass die Rader frei drehen
kénnen, aber das Gestell nicht umkippen kann. * Fahrererkennung aktivieren (Gewichte auf Pads). *
Balance-Regler (PID) aktivieren. * Ziel: Die Rader sollten versuchen, die Plattform horizontal zu
halten, wenn sie manuell leicht geneigt wird. * PID-Tuning beginnen:

1. Nur P-Anteil (I und D auf 0): P erhdhen, bis leichte Oszillationen
auftreten. Dann P etwas reduzieren.

2. D-Anteil hinzufugen: D erhdhen, um Oszillationen zu dampfen.

3. I-Anteil hinzufugen (vorsichtig): I erhdhen, um statische Fehler
auszugleichen.

& Iterativ vorgehen!

https://drklipper.de/ Printed on 2026/01/13 03:17

2026/01/13 03:17 9/9 seKwal

7.3. Dynamische Balance-Tests (mit Fahrer, SEHR GUT GESICHERT!) * Personen zum Sichern
bereitstellen! Langsam beginnen. * In einem Bereich mit viel Platz und ohne Hindernisse. *
Schutzausristung tragen (Helm!). * Feintuning der PID-Werte. * Testen der Reaktion auf leichte
Stdérungen.

7.4. Lenkungstests * Wenn Balance grundlegend funktioniert, Lenklogik aktivieren. * Zuerst bei
sehr langsamer oder keiner Vorwartsbewegung testen. * "STEER_SENSITIVITY" anpassen flr ein
angenehmes Lenkverhalten.

7.5. MessKi-Integrationstests * RP2350 mit MessKi verbinden. * Prifen, ob Telemetriedaten
korrekt in MessKi angezeigt werden. * Testen der Parameteranderung uber MessKi (PID-Werte,
Limits). * Testen der Soll-Geschwindigkeitsvorgabe von MessKi an RP2350.

7.6. Sicherheitsuiberprifungen * Funktion der Fahrererkennung unter allen Bedingungen. *
Reaktion auf maximale Neigung. * Not-Aus-Funktion. * Verhalten bei niedrigem Batteriestand.

8. Mégliche Erweiterungen und Zukiunftige Arbeiten * Verbesserte Sensor-Fusion-Algorithmen
(falls nicht BNO085). * Adaptiver PID-Regler. * Energierickgewinnung beim Bremsen (Hoverboard-
Controller unterstutzen das oft). * Integration von GPS fur Tracking. * Fortgeschrittenere Fahrmodi
(z.B. Sport, Eco). * Hinderniserkennung.

9. Sicherheitshinweise (SEHR WICHTIG!)

* Dies ist ein potenziell gefahrliches Projekt! Ein unkontrolliertes Segway kann schwere
Verletzungen verursachen oder Sachschaden anrichten. * Arbeiten Sie immer mit groBter
Vorsicht! * Tragen Sie immer geeignete Schutzausrustung (Helm, Knie-/Ellbogenschitzer) bei
Testfahrten. * Sichern Sie das Segway bei Tests immer, besonders in der Anfangsphase (z.B.
aufbocken, Haltevorrichtungen, zweite Person). * Implementieren Sie mehrere
Sicherheitsebenen (Fahrererkennung, Neigungslimits, Not-Aus). * Beginnen Sie mit niedrigen
Geschwindigkeiten und geringer Leistung. * Testen Sie in einem sicheren, freien Bereich
ohne Hindernisse oder andere Personen. * Seien Sie sich der Grenzen lhrer Fahigkeiten
und der Hardware bewusst. * Lithium-lonen-Akkus erfordern sorgfaltigen Umgang!
Kurzschlisse und Uberladung vermeiden. Brandschutz beachten. * Ubernehmen Sie die volle
Verantwortung fur lhr Projekt und dessen Betrieb.

Diese Dokumentation ist ein umfangreicher Leitfaden. Beginnen Sie mit kleinen, Uberschaubaren
Schritten und testen Sie jede Komponente grundlich, bevor Sie sie integrieren. Das Debugging und
Tuning des Balance-Reglers wird die meiste Zeit in Anspruch nehmen.

Viel Erfolg bei diesem spannenden Vorhaben!

From:
https://drklipper.de/ - Dr. Klipper Wiki

Permanent link:
https://drklipper.de/doku.php?id=projekte:sekwai:start

Last update: 2025/06/27 03:49

Dr. Klipper Wiki - https://drklipper.de/

https://drklipper.de/
https://drklipper.de/doku.php?id=projekte:sekwai:start

	seKwaI
	Probleme
	Links

