2025/10/28 11:29 1/8 Stromversorgung (Pi 5)

Stromversorgung (Pi 5)

YouTube Video #79

Original 27W Netzteil (5.1V, 5A)

Das originale Netzteil verwendet USB-PD, um den Pi5 mit max. 5A zu versorgen. Das ist aber über der eigentlichen USB-PD Spezifikation - die geht bei 5V max. bis 3A (siehe hier). Danach sollte normalerweise die Spannung steigen auf 9V, um den Strom gering zu halten. Das kann der Pi5 aber nicht.

Es dürfte deshalb etwas schwierig werden, ein alternatives Netzteil für den Pi5 mit 5A zu finden. Und selbst wenn das Netzteil 5A liefern kann, wird es vom Pi5 vermutlich nicht erkannt. Denn bei USB-PD wird der maximale Strom (und im Normalfall auch die Spannung) zwischen Verbraucher (Pi5) und dem Netzteil ausgehandelt.

Mit dem Original Netzteil sollte sich der Pi 5 auch problemlos übertakten lassen (**ausreichende Kühlung vorausgesetzt!**). Wie das geht kann man bei Toms Hardware nachlesen: https://www.tomshardware.com/how-to/overclock-raspberry-pi-5

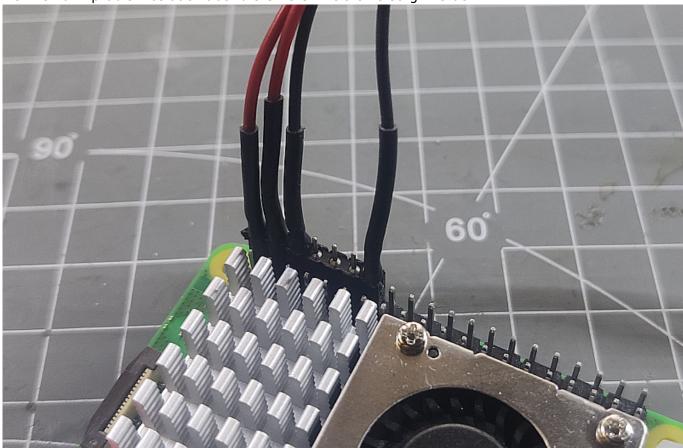
Hinweis

Übertaktet ist der Pi5 noch empfindlicher bei der Eingangsspannung. Bei 3GHz kam schon bei \sim 5V (PMIC ...) eine Warnmeldung und bei 4,95V hing sich der Pi auf.

Original 15W Netzteil (5.1V, 3A)

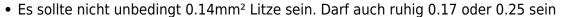
Das Netzteil (ursprünglich für den Pi4 gedacht) funktioniert auch mit einem Pi5. Da nur 3A zur Verfügung stehen, werden im Default aber nur 600mAh für die USB-Ports zur Verfügung gestellt. Diese Einschränkung kann man durch einen Eintrag in der config.txt umgehen - siehe hier.

Wird der Pi5 mit etwas anderem als einer SD-Karte gebootet, erscheint auch eine entsprechende Meldung.


part: 0 mbr [0x0c:00002000 0x83:00102000 0x00:000000000 0x00:000000000]
power: supply: USB-C 3000 mA CC1 PMIC: reset normal 0x0 usb_over_current=0
net: down ip: 0.0.0.0 sn: 0.0.0.0 gw: 0.0.0.0

Hinweis:

bei zu viel angeschlossener Peripherie und hoher CPU Last kann es zum Systemabsturz kommen. Entweder schaltet das Netzteil ab, oder die Spannung fällt zu stark ab.


Versorgung über Pins

Der Pi5 kann problemlos auch über die GPIO Stiftleiste versorgt werden.

Dabei sollten ein paar Dinge beachtet werden:

- Nicht verpolungssicher und Kurzschlussgefahr!
- Die Dupon Kontakte sind für hohe Ströme nicht ausgelegt. Deshalb 2x 5V und 2x GND belegen!
- Auch bei dieser Variante kommt der Hinweis, dass das Netzteil keine 5A liefern kann! Siehe hier
- Die Eingangsspannung überprüfen. Unterhalb von 4,85V kommt eine Low Voltage Warnung.

"alte" 5V Netzteile

Jeder hat sicher noch ein Dutzend ältere 5V Ladegeräte herumliegen. Grundsätzlich kann man auch die verwenden, aber auch hier kommt die Meldung bezüglich dem erforderlichen 5A Netzteil. Es gibt zahlreiche Netzteils mit 1000mA - damit bootet der Pi oft erst gar nicht! Außerdem sollte man hier mal sein Augenmerk auf die Spannung legen. Wenn diese eher schwachen Netzteile stark belastet werden, kann die Spannung auch stark einbrechen. Zudem haben die Netzteile generell eher 5V am Ausgang und nicht 5,1V wie die neuen Raspberry Pi Netzteile!

2025/10/28 11:29 3/8 Stromversorgung (Pi 5)

"Fix" für ungeeignete Netzteile

• Beim Booten mittels USB-Stick, HDD, ... erscheint folgende Meldung:

```
Raspberry Pi 5 - 4GB
         bootloader: 30de0ba5
                                2023/10/30
  board: c04170 5b2d0929 d8:3a:dd:c2:e0:f0
  boot: mode USB-MSD 4 order f41 retry 0/128 restart 0/-1
     SD: card not detected
  part: 0 mbr [0x0c:00002000 0x83:00102000 0x00:00000000 0x00:000000000]
  power: supply: Unknown 3000 mA PMIC: reset normal 0x0 usb_over_current=0
   net: down ip: 0.0.0.0 sn: 0.0.0.0 gw: 0.0.0.0
   tftp: 0.0.0.0 00:00:00:00:00:00
display: DISP0: HDMI HPD=1 EDID=ok #2 DISP1: HPD=0 EDID=none #0
MSD INQUIRY [01:00] 3.00 000000:03
MSD [01:00] 3.00 000000:03 lun 0 block-count 60062500 block-size 512
Trying partition: 0
type: 32 lba: 8192 'mkfs.fat' ' bootfs
                                           ' clusters 261116 (4)
Trying partition: 0
type: 32 lba: 8192 'mkfs.fat' ' bootfs
                                           ' clusters 261116 (4)
Read config.txt bytes
                          1213 hnd 0x126
usb_max_current_enable default 0 max-current 3000
Read bcm2712-rpi-5-b.dtb bytes
                                  75197 hnd 0xc9d6
USB boot requires high current (5 volt 5 amp) power supply.
To disable this check set usb_max_current_enable=1 in config.txt
or press the power button to temporarily enable usb_max_current_enable
and continue booting.
See https://rptl.io/rpi5-power-supply-info for more information
***
```

- Meldung kann mit On/Off Taste übersprungen werden (was automatisch usb_max_current_enable=1 setzt)
- USB Geräte werden auf 600mA limitiert (mit dem Original-Netzteil sind es 1.6A)
- Übergehen kann man das mit einem Eintrag in der /boot/firmware/config.txt
 - sudo nano /boot/firmware/config.txt
 - folgenden Eintrag ergänzen: usb_max_current_enable=1

Spannungen & Ströme

Die folgenden Werte sind experimentell ermittelt und dienen auch nur als grober Anhaltspunkt!

Spannungen

Verhalten	vcgencmd (EXT5V_V)	Netzteil
Warnschwelle Unterspannung	~4,85V	5,01V
Minimale Spannung	~4,5V	4.59V

Strom

Modus	Bootmedium	Strom	Hinweis
Booten	SD	~800 mA	
	USB	~1000 mA	
Idle Desktop	SD	~600 mA	
	USB	~750 mA	
	USB	~780 mA	Übertaktet mit arm_freq=3000 gpu_freq=1000 Im Idle wird der Takt aber auf 1,5GHz gedrosselt!
Stress Test (4 Cores)	SD	~1250 mA	
	USB	~1600 mA	
	USB	~2000 mA	Übertaktet mit arm_freq=3000 gpu_freq=1000

Hinweis

Stromverbrauch bei der Verwendung von USB Geräten kann je nach Gerät variieren!

Stresstest druchführen

- sudo apt install stress
- stress -c 4 -m 4

Unterspannung erkennen

• Im Desktop Betrieb wird eine Meldung angezeigt:

• In der Konsole kann man sich die Meldungen über dmesg - HW ansehen.

```
pi@Pi5Test:~ $ dmesg -HW
[Dec29 18:27] hwmon hwmon3: Undervoltage detected!
   +8.063959] hwmon hwmon3: Voltage normalised
```

Check Voltage

Der Pi5 hat einen PMIC (Power Monitor IC) verbaut, den man mit dem Tool vcgencmd abfragen kann.

• Alle Daten abfragen vcgencmd pmic read adc

```
pi@Pi5Test:~ $ vcgencmd pmic_read_adc
```

2025/10/28 11:29 5/8 Stromversorgung (Pi 5)

```
3V7 WL SW A current(0)=0.09076149A
  3V3 SYS A current(1)=0.06538731A
  1V8 SYS A current(2)=0.18249890A
 DDR VDD2 A current(3)=0.02147046A
DDR VDDQ A current(4)=0.00000000A
  1V1 SYS A current(5)=0.24691030A
   0V8 SW A current(6)=0.33474400A
 VDD CORE A current(7)=0.71440000A
  3V3 DAC A current(17)=0.00000000A
  3V3 ADC A current(18)=0.00030525A
  0V8 AON A current(16)=0.00482295A
     HDMI A current(22)=0.01452990A
3V7 WL SW V volt(8)=3.70441600V
  3V3 SYS V volt(9)=3.31838500V
  1V8 SYS V volt(10)=1.79535800V
 DDR VDD2 V volt(11)=1.10805800V
 DDR VDDQ V volt(12)=0.59890050V
  1V1 SYS V volt(13)=1.10439400V
   0V8 SW V volt(14)=0.80146440V
 VDD CORE V volt(15)=0.72017020V
  3V3 DAC V volt(20)=3.30952000V
  3V3_ADC_V volt(21)=3.31043600V
  0V8 AON V volt(19)=0.79794790V
     HDMI V volt(23)=5.06922000V
    EXT5V V volt(24)=5.07056000V
     BATT V volt(25)=0.00000000V
```

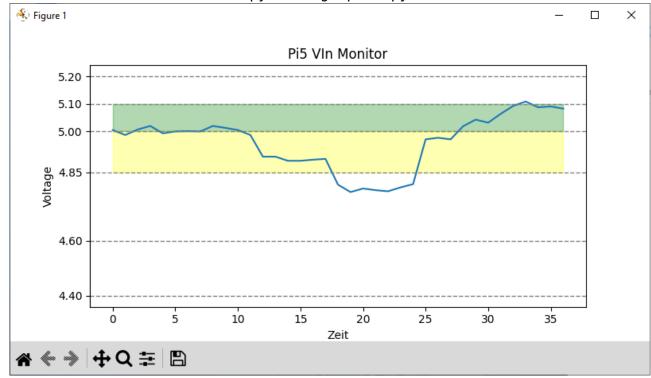
Nur die Eingangsspannung ermitteln
 vcgencmd pmic read adc | grep EXT5V V | cut -d"=" -f2

```
pi@Pi5Test:~ $ vcgencmd pmic_read_adc | grep EXT5V_V | cut -d"=" -f2
5.06922000V
```

Die Eingangsspannung alle 2 Sekunden auslesen (Abbruch mit STRG + C)
 watch -n 2 'vcgencmd pmic_read_adc | grep EXT5V_V | cut -d"=" -f2'

```
Every 2.0s: vcgencmd pmic_read_adc | grep EXT5V_V | cut -d"=" -f2 Pi5Test: Fri Dec 29 18:09:42 2023
5.07860000V
```

etwas Python Magie


- sudo apt install python3-virtualenv python3-tk -y
- virtualenv grapher
- cd grapher/
- source bin/activate
- pip3 install matplotlib
- nano grapher.py

```
import matplotlib
import matplotlib.pyplot as plt
from collections import deque
from datetime import datetime
import subprocess
import time
def run linux program():
    command = 'vcgencmd pmic read adc | grep EXT5V V | cut -d"=" -f2'
    result = subprocess.run(command, capture output=True, text=True,
shell=True)
    print(result.stdout.strip()[:5])
    return float(result.stdout.strip()[:5])
# Initialisierung des Diagramms
matplotlib.use('TkAgg')
print(f"Interactive mode: {matplotlib.is interactive()}")
print(f"matplotlib backend: {matplotlib.rcParams['backend']}")
plt.ion()
fig, ax = plt.subplots()
values = deque(maxlen=100)
try:
    while True:
        values.append(run linux program())
        ax.clear()
        ax.plot(values)
        ax.set_title('Pi5 VIn Monitor')
        ax.set xlabel('Zeit')
        ax.set ylabel('Voltage')
        # Festlegen von 5 Ticks auf der Y-Achse
        y ticks = [4.4, 4.6, 4.85, 5.0, 5.1, 5.2]
        ax.set yticks(y ticks)
        for y_tick in y_ticks:
            ax.axhline(y=y tick, linestyle='dashed', color='gray',
linewidth=1)
        # Bereich zwischen 4,85 und 5,1 einfärben
        ax.fill between(range(len(values)), 5.0, 5.1, color='green',
alpha=0.3)
        ax.fill between(range(len(values)), 4.85, 5.0, color='yellow',
alpha=0.3)
        plt.draw()
        plt.pause(1.0)
except KeyboardInterrupt:
    pass
```

2025/10/28 11:29 7/8 Stromversorgung (Pi 5)

```
finally:
   plt.ioff()
   plt.show()
```

• Starten kann man den Code mittels python3 grapher.py

Abbrechen mit STRG + C

Der An / Aus Taster

- Einmal drücken für Einschalten
- bei der Netzteilwarnung kann man durch einmal drücken den Pi booten (was gleichzeitig usb max current enable=1 setzt)
- Wenn der Pi läuft, kann man durch gedrückt halten (ca. 2-3 Sekunden) den Pi direkt ausschalten
- Wenn der Pi läuft, kann man durch 1x drücken den Pi herunter fahren. Im GUI Betrieb muss das durch ein zweites Drücken bestätigt werden.

Links

- https://www.raspberrypi.com/documentation/computers/raspberry-pi-5.html#powering-raspberr y-pi-5
- https://www.raspberrypi.com/documentation/computers/raspberry-pi-5.html#usb-boot-and-pow er-supplies
- USB-PD USB Power Delivery https://www.elektronik-kompendium.de/sites/com/1809251.htm
- https://vilros.com/pages/raspberry-pi-5-pinout

From:

https://drklipper.de/ - Dr. Klipper Wiki

Permanent link:

https://drklipper.de/doku.php?id=sbcs:raspberry_pi:pi_5_stromversorgung

Last update: 2024/01/24 10:10

